期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Measurements of Laser Induced Bubble Behavior in Elastic Tube and Temperature around Bubble in TUL Treatment
1
作者 Yasuhiro Sugimoto Masamichi Hamamoto 《Journal of Flow Control, Measurement & Visualization》 2020年第3期134-145,共12页
Transurethral ureteral lithotripsy (TUL) is a treatment that breaks stones by irradiating a pulsed laser through an optical fiber. Heat and impulsive force of the laser may affect nearby tissues during treatment. A bu... Transurethral ureteral lithotripsy (TUL) is a treatment that breaks stones by irradiating a pulsed laser through an optical fiber. Heat and impulsive force of the laser may affect nearby tissues during treatment. A bubble induced by the pulsed laser plays an important role in laser lithotripsy. It is important to understand effects of the bubble on the surroundings by simulating treatment in a narrow space such as in a ureter. In this study, we observe behaviors of the bubble in the narrow space inside a soft material simulating under <em>i</em><em></em><em>n vivo</em> condition. The bubble formed under various laser irradiation conditions exhibits characteristic behavior, and the surrounding elastic wall is compressed and bulged when the bubble grows and collapses. In the case of bubble formed near the elastic wall, the bubble contacts with the elastic wall during growth, and severe large deformation of the elastic wall is observed at bubble collapse. According to the temperature measurement, a temperature rise of 25<span style="white-space:nowrap;">℃</span> - 30<span style="white-space:nowrap;">℃</span> occurs in the area where the bubbles are in contact. From the above, by presenting the deformation of the elastic wall and temperature increase, we can show useful information to improve the safety for treatment at narrow space. 展开更多
关键词 Ho:YAG Laser Laser Induced bubble LITHOTRIPSY bubble Behavior in Elastic Tube temperature around bubble
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部