Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize...Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize cracks are only suitable for the situation that the laser scanning path is vertical to the crack. But due to the randomness of cracks,when the scanning path is parallel to the crack,surface cracks cannot be detected by these methods. To tackle this problem,a method is presented which is suitable for the situation that the scanning path is parallel to crack. The main idea is to evaluate the crack-caused asymmetries of the surface temperature distribution. The effect of temperature gradient and the maximum scanning interval are analyzed by a 2D simulation. A new crack imaging technique is presented that is based on delayed temperature difference at symmetric points to characterize the crack in the thermal image. Compared well with those obtained by the spatial first derivative method,experimental results are shown to efficiently prove this method.展开更多
The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 201...The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.展开更多
Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the r...Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.展开更多
This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 mill...This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>展开更多
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While ...The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.展开更多
Land surface temperature(LST) is the skin temperature of the earth surface. LST depends on the amount of sunlight received by any geographical area. Apart from sun light, LST is also affected by the land cover, which ...Land surface temperature(LST) is the skin temperature of the earth surface. LST depends on the amount of sunlight received by any geographical area. Apart from sun light, LST is also affected by the land cover, which leads to change in land surface temperature. Impact of land cover change(LCC) on LST has been assessed using Landsat TM5, Landsat 8 TIRS/OLI and Digital Elevation Model(ASTER) for Spiti Valley, Himachal Pradesh, India. In the present study, Spiti valley was divided into three altitudinal zones to check the pattern of changing land cover along different altitudes and LST was calculated for all the four land cover categories extracted from remote sensing data for the years of 1990 and 2015. Matrix table was used as a technique to evaluate the land cover change between two different years. Matrix table shows that as a whole, about 2,151,647 ha(30%) area of Spiti valley experienced change in land cover in the last 25 years. The result also shows vegetation and water bodies increased by 107,560.2 ha(605.87%) and 45 ha(0.98%), respectively. Snow cover and barren land decreased by 19,016.5 ha(23.92%) and 88,589(14.14%), during the study period. A significant increase has been noticed in vegetation amongst all land cover types. Minimum, maximum and mean LST for three altitudinal zones have been calculated. The mean LST recorded was 11℃ in 1990 but it rose by 2℃ and reached to 13℃ in 2015. Changes in LST were obtained for each land cover categories. The mean temperature of different land cover types was calculated by averaging value of all pixels of a given land cover types. The mean LST of vegetation, barren land, snow cover and water body increased by 6℃, 9℃, 1℃, and 7℃, respectively. Further, relationships between LST, Normalized Difference Snow Index(NDSI), and Normalised Difference Vegetation Index(NDVI) were established using Linear Regression.展开更多
Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering applic...Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.展开更多
The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and...The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.展开更多
The Mongolian Plateau is one of the regions most sensitive to climate change,the more obvious increase of temperature in 21 st century here has been considered as one of the important causes of drought and desertifica...The Mongolian Plateau is one of the regions most sensitive to climate change,the more obvious increase of temperature in 21 st century here has been considered as one of the important causes of drought and desertification.It is very important to understand the multi-year variation and occurrence characteristics of drought in the Mongolian Plateau to explore the ecological environment and the response mechanism of surface materials to climate change.This study examines the spatio-temporal variations in drought and its frequency of occurrence in the Mongolian Plateau based on the Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)(1982–1999)and the Moderate-resolution Imaging Spectroradiometer(MODIS)(2000–2018)datasets;the Temperature Vegetation Dryness Index(TVDI)was used as a drought evaluation index.The results indicate that drought was widespread across the Mongolian Plateau between1982 and 2018,and aridification incremented in the 21 st century.Between 1982 and 2018,an area of 164.38×10^4 km^2/yr suffered from drought,accounting for approximately 55.28%of the total study area.An area of approximately 150.06×10^4 km^2(51.43%)was subject to more than 160 droughts during 259 months of the growing seasons between 1982 and 2018.We observed variable frequencies of drought occurrence depending on land cover/land use types.Drought predominantly occurred in bare land and grassland,both of which accounting for approximately 79.47%of the total study area.These terrains were characterized by low vegetation and scarce precipitation,which led to frequent and extreme drought events.We also noted significant differences between the areal distribution of drought,drought frequency,and degree of drought depending on the seasons.In spring,droughts were widespread,occurred with a high frequency,and were severe;in autumn,they were localized,frequent,and severe;whereas,in summer,droughts were the most widespread and frequent,but less severe.The increase in temperature,decrease in precipitation,continuous depletion of snow cover,and intensification of human activities have resulted in a water deficit.More severe droughts and aridification have affected the distribution and functioning of terrestrial ecosystems,causing changes in the composition and distribution of plants,animals,microorganisms,conversion between carbon sinks and carbon sources,and biodiversity.We conclude that regional drought events have to be accurately monitored,whereas their occurrence mechanisms need further exploration,taking into account nature,climate,society and other influencing factors.展开更多
An experiment is carried out on the surface oscillation of buoyant-thermocapillary convection in an open cylindrical annulus. When the radial temperature difference AT reaches a critical value △Tc, a regular oscillat...An experiment is carried out on the surface oscillation of buoyant-thermocapillary convection in an open cylindrical annulus. When the radial temperature difference AT reaches a critical value △Tc, a regular oscillation appears and soon disappears on the open surface, which varies when the liquid layer's thickness h and temperature difference △T are varied. With growth of △T, dominant frequency of the visible oscillation will grow too but is found within certain frequencies. Driving forces, buoyance and thermocapillarity, are responsible for this phenomanon and the "balance" point is considered to exist when h is between 4.5-5.0 mm. Surface oscillation region is also found restricted within a narrow gap when Bo is smaller than 3.7.展开更多
This knowledge of land surface temperature and its spatial variations within a city environment is of prime importance to the study of urban climate and human-environment interactions. Few studies have examined the in...This knowledge of land surface temperature and its spatial variations within a city environment is of prime importance to the study of urban climate and human-environment interactions. Few studies have examined the influence of land use and terrain on the surface temperature effects of semi-arid mountainous urban areas. This study investigates the urban environment characterization and its effects on surface temperature using remote sensing. The methodologies adapted for this study are geometric and radiometric corrections of satellite data, extraction of land use/land cover and digital elevation model, estimation of vegetation density using Normalized Difference Vegetation Index (NDVI), and estimation of surface temperature and emissivity using temperature emissivity separation (TES) algorithm. Finally geospatial model and statistical techniques are used for assessing the overall impact of urban environmental characterization on urban climate of semi-arid region of Abha, Kingdom of Saudi Arabia. Herein, results reveal that the spatial distribution of surface temperature was affected by land use/land cover (LULC) and topography. The high dense built-up and commercial/industrial areas display higher surface temperature in comparison with surrounding lands. There is gradual decrease of LULC classes’ surface temperature with the increase in altitude. The cooling effect towards the surrounding urban built-up area is found increasing at the hill located vegetated area, the downward slope and valley terrain inside the recreational park. Therefore the spatial variation in surface temperature also reflected the effects of topography on LULC classes. Suitable mountainous land use utilization would help to expand the cooling effect. In the future, the outcomes of this study could be used to build environmentally sustainable urban planning suitable to semi-arid regions and to create practices that consider the local weather environment in urban planning.展开更多
A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting proc...A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C.展开更多
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the sprin...The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.展开更多
In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. S...In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover(LULC), land surface temperature(LST), normalized difference vegetation index(NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently,controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.展开更多
Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time ser...Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time series of soil temperature(ST) measured at different depths(0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was estimated from land surface temperature(LST) and normalized difference vegetation index(NDVI) derived from AQUA/TERRA MODIS data, and solar declination(Ds) in univariate and multivariate linear regression models. Results showed that when daytime LST is used as predictor, the coefficient of determination(R^2) values decrease from the 0 cm layer to the 40 cm layer. Additionally, with the use of nighttime LST as predictor, the R^2 values were relatively higher at 5, 10 and 15 cm depths than those at 0, 20 and 40 cm depths. It is further observed that the multiple linear regression models for soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors(RMSEs) and R^2. These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil temperature estimation at the upper layers of the soil profile where plant roots grow in. To the best of our knowledge, this is the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper layers of the soil profile, representing a significant contribution to soil remote sensing.展开更多
Fabrication of PVDF films has been making using Hot Roll Press. Preparation of samples carried out for nine different temperatures. This condition is carried out to see the effect of temperature fabrication on electri...Fabrication of PVDF films has been making using Hot Roll Press. Preparation of samples carried out for nine different temperatures. This condition is carried out to see the effect of temperature fabrication on electrical properties and crystallite size of PVDF films. The electrical properties like as surface resistivity are discussion focus in this paper. Surface resistivity properties of PVDF can be improved by mechanical treatment on the varying film thickness and the temperature. To obtain the diffraction pattern of sample characterization is performed using X-Ray Diffraction. Crystallite size of PVDF films calculate from broadening pattern of X-Ray Diffraction. Furthermore, from the diffraction pattern calculated β fraction and crystallite size, for calculation to determine the crystallite size of the sample by using the Scherrer equation. Has been obtained an increase piezoelectric properties of PVDF films that characterized by increasing β fraction. Have been obtained β fraction increased from 25.4% up to 44% for temperatures of 130°C up to 170°C, respectively. Resistivity value has been obtained at temperature 130°C up to 170°C, decreased from 1.23 × 104 Wm up to 0.21 × 104 Wm respectively. From the experimental results and the calculation of crystallite sizes obtained for the samples with temperature 130°C up to 170°C respectively are increased from 7.2 nm up to 20.54 nm. These results indicate that mechanical treatment caused increase β fraction and decrease surface resistivity. Increasing temperatures will also increase the size of the crystallite of the sample. This happens because with the increasing temperature causes the higher the degree of crystallization of PVDF film sample is formed, so that the crystallite size also increases.展开更多
Investigation by using LAS 3000 surface analysis system showed that the oxide of Fe, Cr,Al formed during oxidation were Cr_2O_3,Fe_2O_3 and Al_2O_3,but only small amount of nickel oxide was found. The composition of o...Investigation by using LAS 3000 surface analysis system showed that the oxide of Fe, Cr,Al formed during oxidation were Cr_2O_3,Fe_2O_3 and Al_2O_3,but only small amount of nickel oxide was found. The composition of oxide layers for different oxidation durations varied in a similar way. In all cases,there exists an oxygen concentration peak in the composition profile of oxide layer. There is a transitional zone between oxide layer and alloy film.The thickness of oxide layer increases logarithmically with the time of oxida- tion.The ion plated Ni-Cr alloy film has very dense oxide layer and good oxidation resistance.展开更多
Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference un...Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters.展开更多
High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were us...High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.展开更多
基金supported by the National Key Scientific Instrument and Equipment Development Projects,China(Grant No.2013YQ470767)。
文摘Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize cracks are only suitable for the situation that the laser scanning path is vertical to the crack. But due to the randomness of cracks,when the scanning path is parallel to the crack,surface cracks cannot be detected by these methods. To tackle this problem,a method is presented which is suitable for the situation that the scanning path is parallel to crack. The main idea is to evaluate the crack-caused asymmetries of the surface temperature distribution. The effect of temperature gradient and the maximum scanning interval are analyzed by a 2D simulation. A new crack imaging technique is presented that is based on delayed temperature difference at symmetric points to characterize the crack in the thermal image. Compared well with those obtained by the spatial first derivative method,experimental results are shown to efficiently prove this method.
基金Chinese Special Scientific Research Project for Public Interest(GYHY200906008)Natural Science Foundation of China(41275025)+2 种基金Guangdong Science and Technology Plan Project(2012A061400012)Meteorological Project from Guangdong Meteorological Bureau(201003)Research on Pre-warning and Forecasting Techniques for Marine Meteorology from Guangdong Meteorological Bureau
文摘The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.
基金supported by the National Natural Science Foundation of China(41425019,41661144016,91537214)the Public Science and Technology Research Funds Projects of the Ocean(201505013)
文摘Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.
文摘This study employs Landsat-8 Operational Land Imager (OLI) thermal infrared satellite data to compare land surface temperature of two cities in Ghana: Accra and Kumasi. These cities have human populations above 2 million and the corresponding anthropogenic impact on their environments significantly. Images were acquired with minimum cloud cover (<10%) from both dry and rainy seasons between December to August. Image preprocessing and rectification using ArcGIS 10.8 software w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> used. The shapefiles of Accra and Kumasi were used to extract from the full scenes to subset the study area. Thermal band data numbers were converted to Top of Atmospheric Spectral Radiance using radiance rescaling factors. To determine the density of green on a patch of land, normalized difference vegetation index (NDVI) was calculated by using red and near-infrared bands </span><i><span style="font-family:Verdana;">i.e</span></i></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Band 4 and Band 5. Land surface emissivity (LSE) was also calculated to determine the efficiency of transmitting thermal energy across the surface into the atmosphere. Results of the study show variation of temperatures between different locations in two urban areas. The study found Accra to have experienced higher and lower dry season and wet season temperatures, respectively. The temperature ranges corresponding to the dry and wet seasons were found to be 21.0985</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 46.1314</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">, and, 18.3437</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 30.9693</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> respectively. Results of Kumasi also show a higher range of temperatures from 32.6986</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to 19.1077<span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span></span><span style="font-family:Verdana;">C</span><span style="font-family:Verdana;"> during the dry season. In the wet season, temperatures ranged from 26.4142</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;"> to </span><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.898728</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;"><span style="color:#4F4F4F;font-family:Simsun;font-size:14px;white-space:normal;background-color:#FFFFFF;">o</span></span></span>C</span><span style="font-family:Verdana;">. Among the reasons for the cities of Accra and Kumasi recorded higher than corresponding rural areas’ values can be attributed to the urban heat islands’ phenomenon.</span></span></span></span>
基金supported by the National Basic Research Program of China(Grant No.2009CB421405)the National Natural Science Foundationof China(Grant Nos.40730952 and 40905027)+1 种基金the Program of Knowledge Innovation for the 3rd period of Chinese Academy of Sciences(Grant No.KZCX2-YW-220)IAP07414
文摘The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.
文摘Land surface temperature(LST) is the skin temperature of the earth surface. LST depends on the amount of sunlight received by any geographical area. Apart from sun light, LST is also affected by the land cover, which leads to change in land surface temperature. Impact of land cover change(LCC) on LST has been assessed using Landsat TM5, Landsat 8 TIRS/OLI and Digital Elevation Model(ASTER) for Spiti Valley, Himachal Pradesh, India. In the present study, Spiti valley was divided into three altitudinal zones to check the pattern of changing land cover along different altitudes and LST was calculated for all the four land cover categories extracted from remote sensing data for the years of 1990 and 2015. Matrix table was used as a technique to evaluate the land cover change between two different years. Matrix table shows that as a whole, about 2,151,647 ha(30%) area of Spiti valley experienced change in land cover in the last 25 years. The result also shows vegetation and water bodies increased by 107,560.2 ha(605.87%) and 45 ha(0.98%), respectively. Snow cover and barren land decreased by 19,016.5 ha(23.92%) and 88,589(14.14%), during the study period. A significant increase has been noticed in vegetation amongst all land cover types. Minimum, maximum and mean LST for three altitudinal zones have been calculated. The mean LST recorded was 11℃ in 1990 but it rose by 2℃ and reached to 13℃ in 2015. Changes in LST were obtained for each land cover categories. The mean temperature of different land cover types was calculated by averaging value of all pixels of a given land cover types. The mean LST of vegetation, barren land, snow cover and water body increased by 6℃, 9℃, 1℃, and 7℃, respectively. Further, relationships between LST, Normalized Difference Snow Index(NDSI), and Normalised Difference Vegetation Index(NDVI) were established using Linear Regression.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject(51375503)supported by the National Natural Science Foundation of China+1 种基金Project(2016YFB0300901)supported by the Major State Research Program of ChinaProject(2013A017)supported by the Bagui Scholars Program of Guangxi Zhuang Autonomous Region,China
文摘Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.
文摘The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.
基金Under the auspices of Special Project on Basic Resources of Science and Technology(No.2017FY101301)National Natural Science Foundation of China(No.41971398,31770764)Natural Science Foundation Balance Project(No.IDS2019JY-2)。
文摘The Mongolian Plateau is one of the regions most sensitive to climate change,the more obvious increase of temperature in 21 st century here has been considered as one of the important causes of drought and desertification.It is very important to understand the multi-year variation and occurrence characteristics of drought in the Mongolian Plateau to explore the ecological environment and the response mechanism of surface materials to climate change.This study examines the spatio-temporal variations in drought and its frequency of occurrence in the Mongolian Plateau based on the Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)(1982–1999)and the Moderate-resolution Imaging Spectroradiometer(MODIS)(2000–2018)datasets;the Temperature Vegetation Dryness Index(TVDI)was used as a drought evaluation index.The results indicate that drought was widespread across the Mongolian Plateau between1982 and 2018,and aridification incremented in the 21 st century.Between 1982 and 2018,an area of 164.38×10^4 km^2/yr suffered from drought,accounting for approximately 55.28%of the total study area.An area of approximately 150.06×10^4 km^2(51.43%)was subject to more than 160 droughts during 259 months of the growing seasons between 1982 and 2018.We observed variable frequencies of drought occurrence depending on land cover/land use types.Drought predominantly occurred in bare land and grassland,both of which accounting for approximately 79.47%of the total study area.These terrains were characterized by low vegetation and scarce precipitation,which led to frequent and extreme drought events.We also noted significant differences between the areal distribution of drought,drought frequency,and degree of drought depending on the seasons.In spring,droughts were widespread,occurred with a high frequency,and were severe;in autumn,they were localized,frequent,and severe;whereas,in summer,droughts were the most widespread and frequent,but less severe.The increase in temperature,decrease in precipitation,continuous depletion of snow cover,and intensification of human activities have resulted in a water deficit.More severe droughts and aridification have affected the distribution and functioning of terrestrial ecosystems,causing changes in the composition and distribution of plants,animals,microorganisms,conversion between carbon sinks and carbon sources,and biodiversity.We conclude that regional drought events have to be accurately monitored,whereas their occurrence mechanisms need further exploration,taking into account nature,climate,society and other influencing factors.
基金supported by the National Natural Science Foundation of China(11032011 and 10972224)Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-YW-L08)
文摘An experiment is carried out on the surface oscillation of buoyant-thermocapillary convection in an open cylindrical annulus. When the radial temperature difference AT reaches a critical value △Tc, a regular oscillation appears and soon disappears on the open surface, which varies when the liquid layer's thickness h and temperature difference △T are varied. With growth of △T, dominant frequency of the visible oscillation will grow too but is found within certain frequencies. Driving forces, buoyance and thermocapillarity, are responsible for this phenomanon and the "balance" point is considered to exist when h is between 4.5-5.0 mm. Surface oscillation region is also found restricted within a narrow gap when Bo is smaller than 3.7.
文摘This knowledge of land surface temperature and its spatial variations within a city environment is of prime importance to the study of urban climate and human-environment interactions. Few studies have examined the influence of land use and terrain on the surface temperature effects of semi-arid mountainous urban areas. This study investigates the urban environment characterization and its effects on surface temperature using remote sensing. The methodologies adapted for this study are geometric and radiometric corrections of satellite data, extraction of land use/land cover and digital elevation model, estimation of vegetation density using Normalized Difference Vegetation Index (NDVI), and estimation of surface temperature and emissivity using temperature emissivity separation (TES) algorithm. Finally geospatial model and statistical techniques are used for assessing the overall impact of urban environmental characterization on urban climate of semi-arid region of Abha, Kingdom of Saudi Arabia. Herein, results reveal that the spatial distribution of surface temperature was affected by land use/land cover (LULC) and topography. The high dense built-up and commercial/industrial areas display higher surface temperature in comparison with surrounding lands. There is gradual decrease of LULC classes’ surface temperature with the increase in altitude. The cooling effect towards the surrounding urban built-up area is found increasing at the hill located vegetated area, the downward slope and valley terrain inside the recreational park. Therefore the spatial variation in surface temperature also reflected the effects of topography on LULC classes. Suitable mountainous land use utilization would help to expand the cooling effect. In the future, the outcomes of this study could be used to build environmentally sustainable urban planning suitable to semi-arid regions and to create practices that consider the local weather environment in urban planning.
基金Project (50930005) supported by the National Natural Science Foundation of ChinaProject (U0834002) supported by the Key Programof NSFC-Guangdong Joint Funds of China+1 种基金Project (LYM09024) supported by Training Program for Excellent Young Teachers withInnovation of Guangdong University, ChinaProject (2009ZM0121) supported by the Fundamental Research Funds for the CentralUniversities of South China University of Technology,China
文摘A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C.
基金supported by the National Natural Science Foundation of China (Grant No. 40730952)the National Basic Research Program of China (Grant No. 2009CB421405)the Program of Knowledge Innovation for the third period, the Chinese Academy of Sciences (Grant No. KZCX2-YW-220), and IAP07414
文摘The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.
基金supported by the National Natural Science Foundation of China(41205126 and 41475085)Anhui Provincial Natural Science Foundation(1408085MKL60 and1508085MD64)Meteorological Research Fund of Anhui Meteorological Bureau(KM201520)
文摘In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover(LULC), land surface temperature(LST), normalized difference vegetation index(NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently,controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.
基金supported by the National Natural Science Foundation of China (41671418 and 41371326)the Science and Technology Facilities Council of UK-Newton Agritech Programme (Sentinels of Wheat)the Fundamental Research Funds for the Central Universities, China (2019TC117)
文摘Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time series of soil temperature(ST) measured at different depths(0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was estimated from land surface temperature(LST) and normalized difference vegetation index(NDVI) derived from AQUA/TERRA MODIS data, and solar declination(Ds) in univariate and multivariate linear regression models. Results showed that when daytime LST is used as predictor, the coefficient of determination(R^2) values decrease from the 0 cm layer to the 40 cm layer. Additionally, with the use of nighttime LST as predictor, the R^2 values were relatively higher at 5, 10 and 15 cm depths than those at 0, 20 and 40 cm depths. It is further observed that the multiple linear regression models for soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors(RMSEs) and R^2. These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil temperature estimation at the upper layers of the soil profile where plant roots grow in. To the best of our knowledge, this is the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper layers of the soil profile, representing a significant contribution to soil remote sensing.
文摘Fabrication of PVDF films has been making using Hot Roll Press. Preparation of samples carried out for nine different temperatures. This condition is carried out to see the effect of temperature fabrication on electrical properties and crystallite size of PVDF films. The electrical properties like as surface resistivity are discussion focus in this paper. Surface resistivity properties of PVDF can be improved by mechanical treatment on the varying film thickness and the temperature. To obtain the diffraction pattern of sample characterization is performed using X-Ray Diffraction. Crystallite size of PVDF films calculate from broadening pattern of X-Ray Diffraction. Furthermore, from the diffraction pattern calculated β fraction and crystallite size, for calculation to determine the crystallite size of the sample by using the Scherrer equation. Has been obtained an increase piezoelectric properties of PVDF films that characterized by increasing β fraction. Have been obtained β fraction increased from 25.4% up to 44% for temperatures of 130°C up to 170°C, respectively. Resistivity value has been obtained at temperature 130°C up to 170°C, decreased from 1.23 × 104 Wm up to 0.21 × 104 Wm respectively. From the experimental results and the calculation of crystallite sizes obtained for the samples with temperature 130°C up to 170°C respectively are increased from 7.2 nm up to 20.54 nm. These results indicate that mechanical treatment caused increase β fraction and decrease surface resistivity. Increasing temperatures will also increase the size of the crystallite of the sample. This happens because with the increasing temperature causes the higher the degree of crystallization of PVDF film sample is formed, so that the crystallite size also increases.
文摘Investigation by using LAS 3000 surface analysis system showed that the oxide of Fe, Cr,Al formed during oxidation were Cr_2O_3,Fe_2O_3 and Al_2O_3,but only small amount of nickel oxide was found. The composition of oxide layers for different oxidation durations varied in a similar way. In all cases,there exists an oxygen concentration peak in the composition profile of oxide layer. There is a transitional zone between oxide layer and alloy film.The thickness of oxide layer increases logarithmically with the time of oxida- tion.The ion plated Ni-Cr alloy film has very dense oxide layer and good oxidation resistance.
文摘Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters.
基金financially supported by the Special Foundation of the Shanghai Education Commission for Nano-Materials Research (0852nm01400)Shanghai Leading Academic Discipline Project (J51402)
文摘High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.