Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens con...Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface(SPAFS) and alternating stress intensity factor(ASIF) were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.展开更多
This study highlights the joint effect of early polymerization shrinkage and long-term moisture diffusion on the behavior of the restoration-tooth structure. The interphase debonding between particle and polymer resin...This study highlights the joint effect of early polymerization shrinkage and long-term moisture diffusion on the behavior of the restoration-tooth structure. The interphase debonding between particle and polymer resin in dental composite is taken into account by introducing the damage variable. The idealized model is designed and constructed for representing the restorationtooth structure, which consists of enamel, dentin, composite and interphase, each considered as homogenous material. The simulation is carried out using the general-purpose finite element software package, ABAQUS incorporated with a user subroutine for definition of damaged material behavior. The influence of Young's moduli of composite and interphase on stress and displacement is discussed. The compensating effect of water sorption on the polymerization shrinkage is examined with and without involving damage evolution. A comparison is made between the influence of hyper-, equi- and hypo-water sorption. Interfacial failure in the specific regions as well as cuspal movement has been predicated. The damage evolving in dental composite reduces the rigidity of composite, thus in turn reducing consequent stress and increasing consequent displacement. The development of stresses at the restoration-tooth interface can have a detrimental effect on the longevity of a restoration.展开更多
Based on the microstructures of steel, a thermo-elasto-plastic stress model of continuously casting billets is established to study hailal solidifying process in molds. Results show that peritectic phase transformatio...Based on the microstructures of steel, a thermo-elasto-plastic stress model of continuously casting billets is established to study hailal solidifying process in molds. Results show that peritectic phase transformation contributes greatly to the irregular shrinkage ofinitial shell, which makes the billets vulnerable to surface defects.展开更多
Composite one-way concrete slabs with profiled steel sheeting as permanent formwork are commonly used in the construction industry. The steel sheeting supports the wet concrete of a cast-in-situ reinforced or post-ten...Composite one-way concrete slabs with profiled steel sheeting as permanent formwork are commonly used in the construction industry. The steel sheeting supports the wet concrete of a cast-in-situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel sheeting is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the longitudinal shear capacity of each type of steel decking using full-scale tests. This paper presents the results of the short-term testing up to failure of two types of profiled steel decking that are commonly used in the construction industry in Australia. Fourteen full-scale, simply-supported slabs were tested in four-point bending with shear spans of either span/4 or span/6. Four slabs were tested at age of 28 days and the other 10 slabs were subjected to drying shrinkage and various levels of sustained loads for a period of at least 6 months prior to testing to failure. The effects of creep and drying shrinkage on the load carrying capacity and deformation of the slabs at ultimate loads are presented and discussed. The bond-slip relationship of each slab is determined from the test data and the values of maximum longitudinal shear stress calculated using different methods are described and compared.展开更多
The loss of interfacial integrity was identified as one of the major causes for replacement of resin composite restorations. Preheating procedure has been proven to enhance flowability and adaptation of resin composit...The loss of interfacial integrity was identified as one of the major causes for replacement of resin composite restorations. Preheating procedure has been proven to enhance flowability and adaptation of resin composites and increase their degree of conversion. The purpose of this study was to investigate polymerization contraction stress produced in resin composites after preheating to 37℃ and 60℃, and measure microleakage of Class V restorations restored with preheated composites. Three resin composites (GC Kalore, Gradia Direct X, Filtek Supreme XT) at room temperature, 37℃, and 60℃ were investigated. Maximum contraction stress of the composites (n = 5) was evaluated in a modified low-compliance device. Samples were light-cured for 40 seconds and the maximum force was recorded during 15 minutes. Calculations were done to adjust for the system’s compliance and obtain linear shrinkage values of composites. Data were analyzed by Multivariated Analysis of Variance (MANOVA) and Tukey’s test for multiple comparisons (α = 0.05). Seventy-two Class V cavities were prepared on the buccal surfaces of extracted premolars and divided into 9 groups. The teeth were restored with composites at 3 temperatures and were thermo-cycled between 5℃ and 55℃ with a one-minute dwell-time for 1000 cycles. The teeth were sealed with wax and nail vanish before placed in 0.5% toluidine blue dye for 24 hours. The teeth were embedded in self-curing resin and sectioned bucco-lingually with a slow-speed diamond saw, providing 3 sections per restoration. Microleakage was rated by two evaluators using a 0 - 4 ordinal scale at the occlusal and cervical margins under light microscope. Microleakage data were analyzed with Kruskal-Wallis ANOVA and Mann-Whitney U test (α = 0.05). Results indicate that preheating composites to 37℃ and 60℃ significantly increased polymerization contraction stress of composites (p 0.05). A significantly greater amount of leakage was found at the cervical margins (p 0.05). For all tested materials, preheating composites to 60℃ resulted in significantly less microleakage at the cervical margin.展开更多
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
Objectives: The purpose of this study was to investigate the effect of preheat temperatures on polymerization contraction stress and mechanical properties of three resin composites. Methods: Three resin composites (Fi...Objectives: The purpose of this study was to investigate the effect of preheat temperatures on polymerization contraction stress and mechanical properties of three resin composites. Methods: Three resin composites (Filtek Supreme XT, GC Kalore, and Gradia Direct X) at room temperature, 37°C, and 60°C were investigated. Stress development and maximum contraction stress of the composites were evaluated. Directly after preheating, samples were light-cured for 40 seconds and the force recorded for 15 minutes. Subsequent calculations were done to account for the system’s compliance and to obtain the shrinkage stress of the composites. In addition, composite discs (5 mm? and1 mmthick) were light-cured for 40 seconds at the preheat temperature. Hardness, elastic modulus, and creep of composites were investigated using a nano-indentation system (UMIS 2000). The results were analyzed using Two-way Analysis of Variance (2-way ANOVA) and Tukey’s Post-Hoc test (α = 0.05). Results: The results indicated that preheating composites to 37°C and 60°C increased the polymerization contraction forces, but did not significantly affect hardness, elastic modulus, and creep behaviour of the materials. Analysis of the contraction force upon allowing for thermal contraction indicated only a minor influence of preheat temperature. Significance: Preheating composites, upon allowing for system thermal contraction, showed a slight increase of the polymerization contraction stress but did not significantly affect the composites’ mechanical properties.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Natural Science Foundation of Shaanxi Province(No.2013JM6011)the Basic Researches Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface(SPAFS) and alternating stress intensity factor(ASIF) were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.
基金Project supported by the Research Grant Council of Hong Kong (No.PolyU5176/00E).
文摘This study highlights the joint effect of early polymerization shrinkage and long-term moisture diffusion on the behavior of the restoration-tooth structure. The interphase debonding between particle and polymer resin in dental composite is taken into account by introducing the damage variable. The idealized model is designed and constructed for representing the restorationtooth structure, which consists of enamel, dentin, composite and interphase, each considered as homogenous material. The simulation is carried out using the general-purpose finite element software package, ABAQUS incorporated with a user subroutine for definition of damaged material behavior. The influence of Young's moduli of composite and interphase on stress and displacement is discussed. The compensating effect of water sorption on the polymerization shrinkage is examined with and without involving damage evolution. A comparison is made between the influence of hyper-, equi- and hypo-water sorption. Interfacial failure in the specific regions as well as cuspal movement has been predicated. The damage evolving in dental composite reduces the rigidity of composite, thus in turn reducing consequent stress and increasing consequent displacement. The development of stresses at the restoration-tooth interface can have a detrimental effect on the longevity of a restoration.
文摘Based on the microstructures of steel, a thermo-elasto-plastic stress model of continuously casting billets is established to study hailal solidifying process in molds. Results show that peritectic phase transformation contributes greatly to the irregular shrinkage ofinitial shell, which makes the billets vulnerable to surface defects.
文摘Composite one-way concrete slabs with profiled steel sheeting as permanent formwork are commonly used in the construction industry. The steel sheeting supports the wet concrete of a cast-in-situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel sheeting is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the longitudinal shear capacity of each type of steel decking using full-scale tests. This paper presents the results of the short-term testing up to failure of two types of profiled steel decking that are commonly used in the construction industry in Australia. Fourteen full-scale, simply-supported slabs were tested in four-point bending with shear spans of either span/4 or span/6. Four slabs were tested at age of 28 days and the other 10 slabs were subjected to drying shrinkage and various levels of sustained loads for a period of at least 6 months prior to testing to failure. The effects of creep and drying shrinkage on the load carrying capacity and deformation of the slabs at ultimate loads are presented and discussed. The bond-slip relationship of each slab is determined from the test data and the values of maximum longitudinal shear stress calculated using different methods are described and compared.
文摘The loss of interfacial integrity was identified as one of the major causes for replacement of resin composite restorations. Preheating procedure has been proven to enhance flowability and adaptation of resin composites and increase their degree of conversion. The purpose of this study was to investigate polymerization contraction stress produced in resin composites after preheating to 37℃ and 60℃, and measure microleakage of Class V restorations restored with preheated composites. Three resin composites (GC Kalore, Gradia Direct X, Filtek Supreme XT) at room temperature, 37℃, and 60℃ were investigated. Maximum contraction stress of the composites (n = 5) was evaluated in a modified low-compliance device. Samples were light-cured for 40 seconds and the maximum force was recorded during 15 minutes. Calculations were done to adjust for the system’s compliance and obtain linear shrinkage values of composites. Data were analyzed by Multivariated Analysis of Variance (MANOVA) and Tukey’s test for multiple comparisons (α = 0.05). Seventy-two Class V cavities were prepared on the buccal surfaces of extracted premolars and divided into 9 groups. The teeth were restored with composites at 3 temperatures and were thermo-cycled between 5℃ and 55℃ with a one-minute dwell-time for 1000 cycles. The teeth were sealed with wax and nail vanish before placed in 0.5% toluidine blue dye for 24 hours. The teeth were embedded in self-curing resin and sectioned bucco-lingually with a slow-speed diamond saw, providing 3 sections per restoration. Microleakage was rated by two evaluators using a 0 - 4 ordinal scale at the occlusal and cervical margins under light microscope. Microleakage data were analyzed with Kruskal-Wallis ANOVA and Mann-Whitney U test (α = 0.05). Results indicate that preheating composites to 37℃ and 60℃ significantly increased polymerization contraction stress of composites (p 0.05). A significantly greater amount of leakage was found at the cervical margins (p 0.05). For all tested materials, preheating composites to 60℃ resulted in significantly less microleakage at the cervical margin.
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
文摘Objectives: The purpose of this study was to investigate the effect of preheat temperatures on polymerization contraction stress and mechanical properties of three resin composites. Methods: Three resin composites (Filtek Supreme XT, GC Kalore, and Gradia Direct X) at room temperature, 37°C, and 60°C were investigated. Stress development and maximum contraction stress of the composites were evaluated. Directly after preheating, samples were light-cured for 40 seconds and the force recorded for 15 minutes. Subsequent calculations were done to account for the system’s compliance and to obtain the shrinkage stress of the composites. In addition, composite discs (5 mm? and1 mmthick) were light-cured for 40 seconds at the preheat temperature. Hardness, elastic modulus, and creep of composites were investigated using a nano-indentation system (UMIS 2000). The results were analyzed using Two-way Analysis of Variance (2-way ANOVA) and Tukey’s Post-Hoc test (α = 0.05). Results: The results indicated that preheating composites to 37°C and 60°C increased the polymerization contraction forces, but did not significantly affect hardness, elastic modulus, and creep behaviour of the materials. Analysis of the contraction force upon allowing for thermal contraction indicated only a minor influence of preheat temperature. Significance: Preheating composites, upon allowing for system thermal contraction, showed a slight increase of the polymerization contraction stress but did not significantly affect the composites’ mechanical properties.