Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recogni...Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures.展开更多
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t...Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.展开更多
This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat fl...This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat flux density,and analyzes the overall heat dissipation pathways of the bearings.By changing parameters such as input current,rotor speed,and inlet oil flow rate,the study applies a multi-physics field coupling method to investigate the influence of different parameters on the temper-ature field and heat dissipation patterns of the bearings,which is then validated through experi-ments.This research provides a theoretical basis for the optimal design of magnetic fluid bearing sys-tems.展开更多
We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous r...We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.展开更多
At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rota...At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.展开更多
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami...In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.展开更多
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ...Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.展开更多
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the...In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.展开更多
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf...Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.展开更多
A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual couplin...A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual coupling effect between elements caused by a tightly arranged feed array,which changes the performance of a PAF,this paper presents a 7×7 rectangular feed array model for a 25 m reflector telescope.By adjusting the element spacings,the performance of a PAF with different spacings is comprehensively analyzed with respect to the mutual coupling effect via performance statistics and comparison.This research aims to provide a reference for the preliminary design of a related PAF.展开更多
A number of critical problems of topology optimization concerning the thermostructural coupling field axe studied at length. The governing equations and topology optimization model for the thermal-structural coupling ...A number of critical problems of topology optimization concerning the thermostructural coupling field axe studied at length. The governing equations and topology optimization model for the thermal-structural coupling field axe derived, with an adjoint method for sensitivity analysis of the thermo-structural coupling field proposed. The optimization algorithm for coupling field topology optimization is investigated and a flowchart of coupling field topology optimization presented. The theory and algorithms axe implemented and verified by two numerical examples.展开更多
This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network ...This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.展开更多
We introduce a generalized Rashba coupling approximation to analytically solve confined two-dimensional electron systems with both the Rashba and Dresselhaus spin–orbit couplings in an external magnetic field.A solva...We introduce a generalized Rashba coupling approximation to analytically solve confined two-dimensional electron systems with both the Rashba and Dresselhaus spin–orbit couplings in an external magnetic field.A solvable Hamiltonian is obtained by performing a simple change of basis,which has the same form as that with only Rashba coupling.Each Landau state becomes a new displaced-Fock state instead of the original Harmonic oscillator Fock state.Analytical energies are consistent with the numerical ones in a wide range of coupling strength even for a strong Zeeman splitting,exhibiting the validity of the analytical approximation.By using the eigenstates,spin polarization correctly displays a jump at the energy-level crossing point,where the corresponding spin conductance exhibits a pronounced resonant peak.As the component of the Dresselhaus coupling increases,the resonant point shifts to a smaller value of the magnetic field.In contrast to pure Rashba couplings,we find that the Dresselhaus coupling and Zeeman splittings tend to suppress the resonant spin Hall effect.Our method provides an easy-to-implement analytical treatment to two-dimensional electron gas systems with both types of spin–orbit couplings by applying a magnetic field.展开更多
Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters....Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.展开更多
Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engine...Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated.展开更多
We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is reso...We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets. While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition, the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning. An explanation of the spectrum is given in term of the dressed-state formalism.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金supported by the National Natural Science Foundation of China(No.52174045)。
文摘Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures.
基金supported in part by the Slovenian Research Agency(VB,research program P1-0294)(VB,research project J5-2557)+2 种基金(VB,research project J5-4596)COST EU(VB,COST action CA21163(HiTEc)is prepared within the framework of the HSE University Basic Research Program.
文摘Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.
基金the National Natural Science Foundation of China(No.52075468)the Natural Science Foundation of Hebei Province(No.E2020203052)+1 种基金the Key Scientific Research Projects of North China University of Technology(No.ZD-YG-202306-23)the Tangshan Science and Technology Project(No.23130201E).
文摘This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat flux density,and analyzes the overall heat dissipation pathways of the bearings.By changing parameters such as input current,rotor speed,and inlet oil flow rate,the study applies a multi-physics field coupling method to investigate the influence of different parameters on the temper-ature field and heat dissipation patterns of the bearings,which is then validated through experi-ments.This research provides a theoretical basis for the optimal design of magnetic fluid bearing sys-tems.
基金supported by the National Natural Science Foundations of China (No.41204040)China National Special Fund for Earthquake Scientific Research in Public Interest (Nos.201008001, 201308011)Most figures were made using GMT (Wessel et al.2013)
文摘We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.
基金Supported by China Coal Science and Technology Group Technology Innovation Fund Major Project(Grand No.2018ZD002)China Coal Science and Technology Group Technology Innovation Fund Youth Project(Grand No.2018-2-QN010)
文摘At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.
基金Project supported by the National Natural Sciences Foundation of China (Nos. 10132010 and 90405005).
文摘In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330)the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114)。
文摘Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金the National Natural Science Foundation of China(Nos.11872216 and 12272192)the Natural Science Foundation of Zhejiang Province(No.LY22A020002)+2 种基金the Natural Science Foundation of Ningbo City(No.202003N4083)the Scientific Research Foundation of Graduate School of Ningbo UniversityNingbo Science and Technology Major Project(No.2022Z002)。
文摘In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.
文摘Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.
基金This work was supported by the Chinese Academy of Sciences"Light of West China"Program(2020-XBQNXZ-018)the National Natural Science Foundation of China(11973078)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A358)。
文摘A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual coupling effect between elements caused by a tightly arranged feed array,which changes the performance of a PAF,this paper presents a 7×7 rectangular feed array model for a 25 m reflector telescope.By adjusting the element spacings,the performance of a PAF with different spacings is comprehensively analyzed with respect to the mutual coupling effect via performance statistics and comparison.This research aims to provide a reference for the preliminary design of a related PAF.
基金Project supported by the National Natural Postdoctor Scientific Foundation (No.2005037347)973 Project of China (No.2003CB716207).
文摘A number of critical problems of topology optimization concerning the thermostructural coupling field axe studied at length. The governing equations and topology optimization model for the thermal-structural coupling field axe derived, with an adjoint method for sensitivity analysis of the thermo-structural coupling field proposed. The optimization algorithm for coupling field topology optimization is investigated and a flowchart of coupling field topology optimization presented. The theory and algorithms axe implemented and verified by two numerical examples.
基金supported by grants from the National Natural Science Foundation of China,No. 30971534125 Project of the Third Xiangya Hospital of Central South University,China
文摘This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12075040,11875231,11974064,and 12047564)the Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2020jcyj-msxmX0890).
文摘We introduce a generalized Rashba coupling approximation to analytically solve confined two-dimensional electron systems with both the Rashba and Dresselhaus spin–orbit couplings in an external magnetic field.A solvable Hamiltonian is obtained by performing a simple change of basis,which has the same form as that with only Rashba coupling.Each Landau state becomes a new displaced-Fock state instead of the original Harmonic oscillator Fock state.Analytical energies are consistent with the numerical ones in a wide range of coupling strength even for a strong Zeeman splitting,exhibiting the validity of the analytical approximation.By using the eigenstates,spin polarization correctly displays a jump at the energy-level crossing point,where the corresponding spin conductance exhibits a pronounced resonant peak.As the component of the Dresselhaus coupling increases,the resonant point shifts to a smaller value of the magnetic field.In contrast to pure Rashba couplings,we find that the Dresselhaus coupling and Zeeman splittings tend to suppress the resonant spin Hall effect.Our method provides an easy-to-implement analytical treatment to two-dimensional electron gas systems with both types of spin–orbit couplings by applying a magnetic field.
文摘Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.
基金Supported by the National Natural Science Fund for Distinguished Young Scholars of China(50725931)the National Natural Science Foundation of China(50839004,51079107)the Supporting Program of the "Eleventh Five-year Plan" for Sci & Tech Research of China(2008BAB29B01)
文摘Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2009000140)
文摘We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets. While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition, the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning. An explanation of the spectrum is given in term of the dressed-state formalism.