期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
1
作者 Wenhui Guan Xuenian Cao 《Communications on Applied Mathematics and Computation》 2021年第1期41-59,共19页
By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov te... By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective. 展开更多
关键词 Caputo tempered fractional advection-diffusion equation Fractional-compact grünwald–Letnikov tempered Fractional central difference operator Stability Convergence
下载PDF
Analytical and Numerical Solutions of Riesz Space Fractional Advection-Dispersion Equations with Delay
2
作者 Mahdi Saedshoar Heris Mohammad Javidi Bashir Ahmad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期249-272,共24页
In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and wei... In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution. 展开更多
关键词 RIESZ FRACTIONAL derivative shifted grünwald difference OPERATORS FRACTIONAL ADVECTION-DISPERSION equation DELAY differential equations FBDF method
下载PDF
一类变系数回火分数阶扩散方程离散格式的收敛性分析
3
作者 屈威 叶宇航 《韶关学院学报》 2022年第6期10-15,共6页
提出了证明一类变系数回火分数阶扩散方程离散格式的收敛性的一种新方法,针对变系数回火分数阶扩散方程,采用Crank-Nicolson方法离散一阶时间偏导数,用回火加权移位Grünwald算子逼近正规化Riemann-Liouville回火分数阶导数,所获得... 提出了证明一类变系数回火分数阶扩散方程离散格式的收敛性的一种新方法,针对变系数回火分数阶扩散方程,采用Crank-Nicolson方法离散一阶时间偏导数,用回火加权移位Grünwald算子逼近正规化Riemann-Liouville回火分数阶导数,所获得的数值离散格式是无条件稳定的和收敛的.但是,关于收敛性的证明是基于较强的条件完成的.为进一步降低数值离散格式收敛性证明中的条件,引入了一种新的分析技术,结合合同矩阵的性质,严格证明了所得数值离散格式的收敛性在离散L2范数下满足空间和时间上是二阶精度收敛的. 展开更多
关键词 回火分数阶扩散方程 TOEPLITZ矩阵 Crank-Nicolson方法 回火加权移位grünwald算子 收敛性
下载PDF
双边空间分数阶对流-扩散方程的一种有限差分解法 被引量:13
4
作者 苏丽娟 王文洽 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第10期26-29,共4页
给出双边空间分数阶对流-扩散方程的一种隐式有限差分解法。并证明了这种方法的相容性,无条件稳定性,以及由此得出的收敛性。最后给出数值例子,并对方程的数值解和精确解进行比较。
关键词 双边空间分数阶对流-扩散方程 移位grnwald-Letnikov公式 有限差分法 稳定性分析
原文传递
A conservative numerical method for the fractional nonlinear Schrodinger equation in two dimensions
5
作者 Rongpei Zhang Yong-Tao Zhang +2 位作者 Zhen Wang Bo Chen Yi Zhang 《Science China Mathematics》 SCIE CSCD 2019年第10期1997-2014,共18页
This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grü... This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional nonlinear Schr?dinger(NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted Grünwald-Letnikov difference(WSGD) operator for the spatial fractional Laplacian. We prove that the proposed method preserves the mass and energy conservation laws in semi-discrete formulations. By introducing the differentiation matrices, the semi-discrete fractional nonlinear Schr?dinger(FNLS) equation can be rewritten as a system of nonlinear ordinary differential equations(ODEs) in matrix formulations. Two kinds of time discretization methods are proposed for the semi-discrete formulation. One is based on the Crank-Nicolson(CN) method which can be proved to preserve the fully discrete mass and energy conservation. The other one is the compact implicit integration factor(c IIF) method which demands much less computational effort. It can be shown that the cIIF scheme can approximate CN scheme with the error O(τ~2). Finally numerical results are presented to demonstrate the method’s conservation, accuracy, efficiency and the capability of capturing blow-up. 展开更多
关键词 fractional nonlinear Schrodinger equation weighted and shifted grünwald-Letnikov difference compact integration factor method CONSERVATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部