The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.I...The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.In this paper,we propose an information spreading-based method to calculate the shortest paths distribution in temporal networks.We verify our method on both artificial and real-world temporal networks and obtain a good agreement.We further generalize our method to identify influential nodes and found an effective method.Finally,we verify the influential nodes identifying method on four networks.展开更多
Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal...Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal graph association rules(TGARs)that extend traditional graph-pattern association rules in a static graph by incorporating the unique temporal information and constraints.We introduce quality measures(e.g.,support,confidence,and diversification)to characterize meaningful TGARs that are useful and diversified.In addition,the proposed support metric is an upper bound for alternative metrics,allowing us to guarantee a superset of patterns.We extend conventional confidence measures in terms of maximal occurrences of TGARs.The diversification score strikes a balance between interestingness and diversity.Although the problem is NP-hard,we develop an effective discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining TGARs is feasible over a temporal graph.We propose pruning strategies to filter TGARs that have low support or cannot make top-k as early as possible.Moreover,we design an auxiliary data structure to prune the TGARs that do not meet the constraints during the TGARs generation process to avoid conducting repeated subgraph matching for each extension in the search space.We experimentally verify the effectiveness,efficiency,and scalability of our algorithms in discovering diversified top-k TGARs from temporal graphs in real-life applications.展开更多
Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT ...Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT problem,we propose an influence maximization algorithm based on an improved K-shell method,namely improved K-shell in temporal social networks(KT).The algorithm takes into account the global and local structures of temporal social networks.First,to obtain the kernel value Ks of each node,in the global scope,it layers the network according to the temporal characteristic of nodes by improving the K-shell method.Then,in the local scope,the calculation method of comprehensive degree is proposed to weigh the influence of nodes.Finally,the node with the highest comprehensive degree in each core layer is selected as the seed.However,the seed selection strategy of KT can easily lose some influential nodes.Thus,by optimizing the seed selection strategy,this paper proposes an efficient heuristic algorithm called improved K-shell in temporal social networks for influence maximization(KTIM).According to the hierarchical distribution of cores,the algorithm adds nodes near the central core to the candidate seed set.It then searches for seeds in the candidate seed set according to the comprehensive degree.Experiments showthatKTIMis close to the best performing improved method for influence maximization of temporal graph(IMIT)algorithm in terms of effectiveness,but runs at least an order of magnitude faster than it.Therefore,considering the effectiveness and efficiency simultaneously in temporal social networks,the KTIM algorithm works better than other baseline algorithms.展开更多
Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most exi...Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.展开更多
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac...The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
Temporal networks are an effective way to encode temporal information into graph data losslessly.Finding the bursting cohesive subgraph(BCS),which accumulates its cohesiveness at the fastest rate,is an important probl...Temporal networks are an effective way to encode temporal information into graph data losslessly.Finding the bursting cohesive subgraph(BCS),which accumulates its cohesiveness at the fastest rate,is an important problem in temporal networks.The BCS has a large number of applications,such as representing emergency events in social media,traffic congestion in road networks and epidemic outbreak in communities.Nevertheless,existing methods demand the BCS lasting for a time interval,which neglects the timeliness of the BCS.In this paper,we design an early bursting cohesive subgraph(EBCS)model based on the k-core to enable identifying the burstiness as soon as possible.To find the EBCS,we first construct a time weight graph(TWG)to measure the bursting level by integrating the topological and temporal information.Then,we propose a global search algorithm,called GS-EBCS,which can find the exact EBCS by iteratively removing nodes from the TWG.Further,we propose a local search algorithm,named LS-EBCS,to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity.Subsequently,considering the situation that the massive temporal networks cannot be completely put into the memory,we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms,namely I/O-GS and I/O-LS respectively,to find the EBCS under the semi-external model.Extensive experiments,conducted on four real temporal networks,demonstrate the efficiency and effectiveness of our proposed algorithms.For example,on the DBLP dataset,I/O-LS and LS-EBCS have comparable running time,while the maximum memory usage of I/O-LS is only 6.5 MB,which is much smaller than that of LS-EBCS taking 308.7 MB.展开更多
Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level ...Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes.展开更多
Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the ...Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments.展开更多
In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.M...In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver.展开更多
In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended spee...In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended speech quality,the high model complex-ity makes it infeasible to run on the client.In order to tackle these issues,this paper proposes an end-to-end speech bandwidth extension method based on a temporal convolutional neural network,which greatly reduces the complexity of the model.In addition,a new time-frequency loss function is designed to en-able narrowband speech to acquire a more accurate wideband mapping in the time domain and the fre-quency domain.The experimental results show that the reconstructed wideband speech generated by the proposed method is superior to the traditional heuris-tic rule based approaches and the conventional neu-ral network methods for both subjective and objective evaluation.展开更多
Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines.Speech Emotion Recognition(SER)is one of the critical sources for human evaluatio...Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines.Speech Emotion Recognition(SER)is one of the critical sources for human evaluation,which is applicable in many real-world applications such as healthcare,call centers,robotics,safety,and virtual reality.This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state.The authors designed a Temporal Convolutional Network(TCN)core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network to fuse the spatial features and recognize global information for final classification.The proposed network extracts valid sequential cues automatically from speech signals,which performed better than state-of-the-art(SOTA)and traditional machine learning algorithms.Results of the proposed method show a high recognition rate compared with SOTAmethods.The final unweighted accuracy of 80.84%,and 92.31%,for interactive emotional dyadic motion captures(IEMOCAP)and berlin emotional dataset(EMO-DB),indicate the robustness and efficiency of the designed model.展开更多
Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlatio...Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects.展开更多
Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magni...Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays.展开更多
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t...Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.展开更多
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article...Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Automatically detecting learners’engagement levels helps to develop more effective online teaching and assessment programs,allowing teachers to provide timely feedback and make personalized adjustments based on stude...Automatically detecting learners’engagement levels helps to develop more effective online teaching and assessment programs,allowing teachers to provide timely feedback and make personalized adjustments based on students’needs to enhance teaching effectiveness.Traditional approaches mainly rely on single-frame multimodal facial spatial information,neglecting temporal emotional and behavioural features,with accuracy affected by significant pose variations.Additionally,convolutional padding can erode feature maps,affecting feature extraction’s representational capacity.To address these issues,we propose a hybrid neural network architecture,the redistributing facial features and temporal convolutional network(RefEIP).This network consists of three key components:first,utilizing the spatial attention mechanism large kernel attention(LKA)to automatically capture local patches and mitigate the effects of pose variations;second,employing the feature organization and weight distribution(FOWD)module to redistribute feature weights and eliminate the impact of white features and enhancing representation in facial feature maps.Finally,we analyse the temporal changes in video frames through the modern temporal convolutional network(ModernTCN)module to detect engagement levels.We constructed a near-infrared engagement video dataset(NEVD)to better validate the efficiency of the RefEIP network.Through extensive experiments and in-depth studies,we evaluated these methods on the NEVD and the Database for Affect in Situations of Elicitation(DAiSEE),achieving an accuracy of 90.8%on NEVD and 61.2%on DAiSEE in the fourclass classification task,indicating significant advantages in addressing engagement video analysis problems.展开更多
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora...Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61903266)China Postdoctoral Science Foundation(Grant No.2018M631073)+2 种基金China Postdoctoral Science Special Foundation(Grant No.2019T120829)the Fundamental Research Funds for the Central Universities,ChinaSichuan Science and Technology Program,China(Grant No.20YYJC4001)。
文摘The shortest path is a widely studied network science problem and has attracted great attention.Nevertheless,it draws little attention in temporal networks,in which temporal edges determine information dissemination.In this paper,we propose an information spreading-based method to calculate the shortest paths distribution in temporal networks.We verify our method on both artificial and real-world temporal networks and obtain a good agreement.We further generalize our method to identify influential nodes and found an effective method.Finally,we verify the influential nodes identifying method on four networks.
基金This work was partially supported by the National Key Research and Development Program(No.2018YFB1800203)National Natural Science Foundation of China(No.U19B2024)Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20210038).
文摘Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal graph association rules(TGARs)that extend traditional graph-pattern association rules in a static graph by incorporating the unique temporal information and constraints.We introduce quality measures(e.g.,support,confidence,and diversification)to characterize meaningful TGARs that are useful and diversified.In addition,the proposed support metric is an upper bound for alternative metrics,allowing us to guarantee a superset of patterns.We extend conventional confidence measures in terms of maximal occurrences of TGARs.The diversification score strikes a balance between interestingness and diversity.Although the problem is NP-hard,we develop an effective discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining TGARs is feasible over a temporal graph.We propose pruning strategies to filter TGARs that have low support or cannot make top-k as early as possible.Moreover,we design an auxiliary data structure to prune the TGARs that do not meet the constraints during the TGARs generation process to avoid conducting repeated subgraph matching for each extension in the search space.We experimentally verify the effectiveness,efficiency,and scalability of our algorithms in discovering diversified top-k TGARs from temporal graphs in real-life applications.
基金Thiswork is supported by theYouth Science and Technology Innovation Personnel Training Project of Heilongjiang(No.UNPYSCT-2020072)the FundamentalResearch Funds for the Universities of Heilongjiang(Nos.145109217,135509234)+1 种基金the Education Science Fourteenth Five-Year Plan 2021 Project of Heilongjiang(No.GJB1421344)the Innovative Research Projects for Postgraduates of Qiqihar University(No.YJSCX2022048).
文摘Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT problem,we propose an influence maximization algorithm based on an improved K-shell method,namely improved K-shell in temporal social networks(KT).The algorithm takes into account the global and local structures of temporal social networks.First,to obtain the kernel value Ks of each node,in the global scope,it layers the network according to the temporal characteristic of nodes by improving the K-shell method.Then,in the local scope,the calculation method of comprehensive degree is proposed to weigh the influence of nodes.Finally,the node with the highest comprehensive degree in each core layer is selected as the seed.However,the seed selection strategy of KT can easily lose some influential nodes.Thus,by optimizing the seed selection strategy,this paper proposes an efficient heuristic algorithm called improved K-shell in temporal social networks for influence maximization(KTIM).According to the hierarchical distribution of cores,the algorithm adds nodes near the central core to the candidate seed set.It then searches for seeds in the candidate seed set according to the comprehensive degree.Experiments showthatKTIMis close to the best performing improved method for influence maximization of temporal graph(IMIT)algorithm in terms of effectiveness,but runs at least an order of magnitude faster than it.Therefore,considering the effectiveness and efficiency simultaneously in temporal social networks,the KTIM algorithm works better than other baseline algorithms.
基金supported by the Fundamental Research Funds for the Universities of Heilongjiang(Nos.145109217,135509234)the Youth Science and Technology Innovation Personnel Training Project of Heilongjiang(No.UNPYSCT-2020072)the Innovative Research Projects for Postgraduates of Qiqihar University(No.YJSCX2022048).
文摘Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.
文摘The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
基金the National Natural Science Foundation of China under Grant Nos.61902004,61772124,61732003,and 61977001the Project of Beijing Municipal Education Commission under Grant No.KM202010009009+1 种基金Innovative Talents of Higher Education in Liaoning Province under Grant No.LR2020076the Basic Research Operating Funds for National Defense Major Incubation Projects under Grant No.N2116017.
文摘Temporal networks are an effective way to encode temporal information into graph data losslessly.Finding the bursting cohesive subgraph(BCS),which accumulates its cohesiveness at the fastest rate,is an important problem in temporal networks.The BCS has a large number of applications,such as representing emergency events in social media,traffic congestion in road networks and epidemic outbreak in communities.Nevertheless,existing methods demand the BCS lasting for a time interval,which neglects the timeliness of the BCS.In this paper,we design an early bursting cohesive subgraph(EBCS)model based on the k-core to enable identifying the burstiness as soon as possible.To find the EBCS,we first construct a time weight graph(TWG)to measure the bursting level by integrating the topological and temporal information.Then,we propose a global search algorithm,called GS-EBCS,which can find the exact EBCS by iteratively removing nodes from the TWG.Further,we propose a local search algorithm,named LS-EBCS,to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity.Subsequently,considering the situation that the massive temporal networks cannot be completely put into the memory,we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms,namely I/O-GS and I/O-LS respectively,to find the EBCS under the semi-external model.Extensive experiments,conducted on four real temporal networks,demonstrate the efficiency and effectiveness of our proposed algorithms.For example,on the DBLP dataset,I/O-LS and LS-EBCS have comparable running time,while the maximum memory usage of I/O-LS is only 6.5 MB,which is much smaller than that of LS-EBCS taking 308.7 MB.
文摘Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes.
文摘Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments.
基金supported by the National Key R&D Program of China under Grant 2018YFB1801500.
文摘In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver.
文摘In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended speech quality,the high model complex-ity makes it infeasible to run on the client.In order to tackle these issues,this paper proposes an end-to-end speech bandwidth extension method based on a temporal convolutional neural network,which greatly reduces the complexity of the model.In addition,a new time-frequency loss function is designed to en-able narrowband speech to acquire a more accurate wideband mapping in the time domain and the fre-quency domain.The experimental results show that the reconstructed wideband speech generated by the proposed method is superior to the traditional heuris-tic rule based approaches and the conventional neu-ral network methods for both subjective and objective evaluation.
文摘Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines.Speech Emotion Recognition(SER)is one of the critical sources for human evaluation,which is applicable in many real-world applications such as healthcare,call centers,robotics,safety,and virtual reality.This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state.The authors designed a Temporal Convolutional Network(TCN)core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network to fuse the spatial features and recognize global information for final classification.The proposed network extracts valid sequential cues automatically from speech signals,which performed better than state-of-the-art(SOTA)and traditional machine learning algorithms.Results of the proposed method show a high recognition rate compared with SOTAmethods.The final unweighted accuracy of 80.84%,and 92.31%,for interactive emotional dyadic motion captures(IEMOCAP)and berlin emotional dataset(EMO-DB),indicate the robustness and efficiency of the designed model.
基金supported by the National Natural Science Foundation of China under Grants 42172161by the Heilongjiang Provincial Natural Science Foundation of China under Grant LH2020F003+2 种基金by the Heilongjiang Provincial Department of Education Project of China under Grants UNPYSCT-2020144by the Innovation Guidance Fund of Heilongjiang Province of China under Grants 15071202202by the Science and Technology Bureau Project of Qinhuangdao Province of China under Grants 202101A226.
文摘Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects.
基金This work was supported by SUG Research Grant M4082126.050 by the School of Mechanical and Aerospace Engineering(MAE),Nanyang Technological University(NTU),SingaporeNTU-CAAS Research Grant M4062429.052 by the ATM Research Institute,School of MAE,NTU,Singapore.
文摘Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays.
基金supported in part by the Slovenian Research Agency(VB,research program P1-0294)(VB,research project J5-2557)+2 种基金(VB,research project J5-4596)COST EU(VB,COST action CA21163(HiTEc)is prepared within the framework of the HSE University Basic Research Program.
文摘Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.
文摘Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by the National Natural Science Foundation of China(No.62367006)the Graduate Innovative Fund of Wuhan Institute of Technology(Grant No.CX2023551).
文摘Automatically detecting learners’engagement levels helps to develop more effective online teaching and assessment programs,allowing teachers to provide timely feedback and make personalized adjustments based on students’needs to enhance teaching effectiveness.Traditional approaches mainly rely on single-frame multimodal facial spatial information,neglecting temporal emotional and behavioural features,with accuracy affected by significant pose variations.Additionally,convolutional padding can erode feature maps,affecting feature extraction’s representational capacity.To address these issues,we propose a hybrid neural network architecture,the redistributing facial features and temporal convolutional network(RefEIP).This network consists of three key components:first,utilizing the spatial attention mechanism large kernel attention(LKA)to automatically capture local patches and mitigate the effects of pose variations;second,employing the feature organization and weight distribution(FOWD)module to redistribute feature weights and eliminate the impact of white features and enhancing representation in facial feature maps.Finally,we analyse the temporal changes in video frames through the modern temporal convolutional network(ModernTCN)module to detect engagement levels.We constructed a near-infrared engagement video dataset(NEVD)to better validate the efficiency of the RefEIP network.Through extensive experiments and in-depth studies,we evaluated these methods on the NEVD and the Database for Affect in Situations of Elicitation(DAiSEE),achieving an accuracy of 90.8%on NEVD and 61.2%on DAiSEE in the fourclass classification task,indicating significant advantages in addressing engagement video analysis problems.
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241 A-1-1-ZN).
文摘Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.