期刊文献+
共找到739篇文章
< 1 2 37 >
每页显示 20 50 100
TSCND:Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting
1
作者 Haoran Huang Weiting Chen Zheming Fan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3665-3681,共17页
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t... Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN. 展开更多
关键词 DIFFERENCE data prediction time series temporal convolutional network dilated convolution
下载PDF
Spectrum Sensing via Temporal Convolutional Network 被引量:7
2
作者 Tao Ni Xiaojin Ding +3 位作者 Yunfeng Wang Jun Shen Lifeng Jiang Gengxin Zhang 《China Communications》 SCIE CSCD 2021年第9期37-47,共11页
In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain... In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity. 展开更多
关键词 cognitive radio spectrum sensing deep learning temporal convolutional network satellite communication
下载PDF
A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants
3
作者 Shaoxiong Wu Ruoxin Li +6 位作者 Xiaofeng Tao Hailong Wu Ping Miao Yang Lu Yanyan Lu Qi Liu Li Pan 《Computers, Materials & Continua》 SCIE EI 2024年第11期3063-3077,共15页
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati... Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods. 展开更多
关键词 Times series forecasting long short term memory network(LSTM) time convolutional network(tcn) wavelet decomposition
下载PDF
A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model 被引量:2
4
作者 ZHANG Lei DOU Hongen +6 位作者 WANG Tianzhi WANG Hongliang PENG Yi ZHANG Jifeng LIU Zongshang MI Lan JIANG Liwei 《Petroleum Exploration and Development》 CSCD 2022年第5期1150-1160,共11页
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an... Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction. 展开更多
关键词 single well production prediction temporal convolutional network time series prediction water flooding reservoir
下载PDF
Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition 被引量:1
5
作者 Motasem S.Alsawadi El-Sayed M.El-kenawy Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2023年第1期19-36,共18页
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac... The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively. 展开更多
关键词 Action recognition BlazePose graph neural network OpenPose SKELETON spatial temporal graph convolution network
下载PDF
A Lightweight Temporal Convolutional Network for Human Motion Prediction 被引量:1
6
作者 WANG You QIAO Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期150-157,共8页
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain... A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction. 展开更多
关键词 human motion prediction temporal convolutional network short-term prediction long-term prediction deep neural network
下载PDF
Blood Glucose Prediction Model Based on Prophet and Temporal Convolutional Networks
7
作者 Rong Xiao Jing Chen +1 位作者 Lei Wang Wei Liu 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期413-421,共9页
Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level ... Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes. 展开更多
关键词 blood glucose temporal convolutional networks(tcn) seasonal decomposition
下载PDF
Training-based symbol detection with temporal convolutional neural network in single-polarized optical communication system
8
作者 Yingzhe Luo Jianhao Hu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期920-930,共11页
In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.M... In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver. 展开更多
关键词 Deep learning Optical communications Symbol detection temporal convolutional network
下载PDF
Temporal Convolutional Network for Speech Bandwidth Extension
9
作者 Chundong Xu Cheng Zhu +1 位作者 Xianpeng Ling Dongwen Ying 《China Communications》 SCIE CSCD 2023年第11期142-150,共9页
In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended spee... In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended speech quality,the high model complex-ity makes it infeasible to run on the client.In order to tackle these issues,this paper proposes an end-to-end speech bandwidth extension method based on a temporal convolutional neural network,which greatly reduces the complexity of the model.In addition,a new time-frequency loss function is designed to en-able narrowband speech to acquire a more accurate wideband mapping in the time domain and the fre-quency domain.The experimental results show that the reconstructed wideband speech generated by the proposed method is superior to the traditional heuris-tic rule based approaches and the conventional neu-ral network methods for both subjective and objective evaluation. 展开更多
关键词 speech bandwidth extension temporal convolutional networks time-frequency loss
下载PDF
基于TCN和迁移学习的混凝土坝变形预测方法 被引量:1
10
作者 张健飞 叶亮 王磊 《人民黄河》 CAS 北大核心 2024年第4期142-147,共6页
混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的... 混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的测点为源域,以缺少数据的测点为目标域,将在源域上训练好的TCN模型的结构和参数迁移到目标域模型中,固定其中的冻结层参数,利用目标域中的数据对目标域模型可调层参数进行调整。同时,采用动态时间规整选择与目标域数据序列相似度最高的监测数据作为最佳源域数据,提升迁移学习效果。工程实例分析表明:迁移学习后的目标域模型的均方根误差和平均绝对误差与利用足量数据训练的TCN模型的预测误差相比,差异仅分别为1.73%和8.09%,小数据量情况下TCN预测模型的精度得到了提高。 展开更多
关键词 时域卷积网络 迁移学习 动态时间规整 变形预测
下载PDF
用于农产品冷链物流需求预测的GRA-WHO-TCN组合模型 被引量:2
11
作者 刘艳 季俊成 《智慧农业(中英文)》 CSCD 2024年第3期148-158,共11页
[目的/意义]为了解决冷链物流需求预测在数字化转型中存在特征提取不充分、数据非线性程度高和算法易陷入局部最优等问题,提出一种结合灰色关联分析(Grey Relational Analysis,GRA)、野马优化算法(Wild Horse Optimizer,WHO)和时序卷积... [目的/意义]为了解决冷链物流需求预测在数字化转型中存在特征提取不充分、数据非线性程度高和算法易陷入局部最优等问题,提出一种结合灰色关联分析(Grey Relational Analysis,GRA)、野马优化算法(Wild Horse Optimizer,WHO)和时序卷积网络(Temporal Convolutional Networks,TCN)的组合预测模型,旨在解决需求预测精度不高的问题,以实现农产品供应链智能化管理。[方法]首先运用GRA对农产品冷链物流相关指标进行关联度筛选;其次采用TCN充分考虑农产品供应链中社会经济数据及物流信息中的时序性特征,并使用WHO对TCN模型超参数进行寻优;最后运用优化的GRA-WHO-TCN模型对浙江省冷链物流需求进行预测。[结果和讨论]采用WHO的时序算法TCN模型能够有效提取多维度数据的时序特征和空间特征,具备较好的拟合效果。与GRALSTM、GRA-TCN和GRA-WHO-LSTM模型相比,GRA-WHO-TCN冷链物流需求预测模型具有较低的均方根误差值(11.3)和有效的相关系数(0.95),且预测2016—2020年浙江省农产品冷链物流需求量分别为2980、3046、2487、2645和2799万吨,能够实现对冷链物流需求较高的预测精度。[结论]提出的GRA-WHO-TCN模型具备良好的优化和预测能力,能够为数字经济背景下农产品供应链物资流、信息流发展提供科学预测依据和实际参考价值。 展开更多
关键词 数字化转型 农产品供应链 冷链物流 灰色关联分析 野马优化算法 时序卷积网络
下载PDF
基于VMD-TCN-GRU模型的水质预测研究 被引量:1
12
作者 项新建 许宏辉 +4 位作者 谢建立 丁祎 胡海斌 郑永平 杨斌 《人民黄河》 CAS 北大核心 2024年第3期92-97,共6页
为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此... 为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此类研究中常见的SVR(支持向量回归)、LSTM(长短期记忆神经网络)、TCN和CNN-LSTM(卷积神经网络-长短期记忆神经网络)这4种模型预测结果对比表明:VMD-TCN-GRU模型能更好挖掘水质数据在短时震荡过程中的特征信息,提升水质预测精度;VMD-TCN-GRU模型的MAE(平均绝对误差)、RMSE(均方根误差)下降,R^(2)(确定系数)提高,其MAE、RMSE、R^(2)分别为0.0553、0.0717、0.9351;其预测性能优越,预测精度更高且拥有更强的泛化能力,可以应用于汾河水质预测。 展开更多
关键词 水质预测 混合模型 变分模态分解 卷积时间神经网络 门控循环单元 时间序列 汾河
下载PDF
基于多维可预知特征的TCN-LSTM城轨短期客流预测
13
作者 赵利强 李瑞森 +2 位作者 唐水雄 唐金金 张涛 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期86-96,共11页
地铁客流量波动受众多因素影响,准确的客流预测数据有利于制定更高效的行车控制方案和客流管控方案。为提高客流预测精度,提出一种基于多维可预知特征的时序卷积神经网络-长短期记忆神经网络模型(TCNLSTM)地铁短期客流预测方法。考虑外... 地铁客流量波动受众多因素影响,准确的客流预测数据有利于制定更高效的行车控制方案和客流管控方案。为提高客流预测精度,提出一种基于多维可预知特征的时序卷积神经网络-长短期记忆神经网络模型(TCNLSTM)地铁短期客流预测方法。考虑外部因素的影响,引入Spearman相关系数分析并提取日期、天气等可预知特征及其状态集,以提升预测精度,缩小特征空间,克服了冗余特征数据导致的模型过于复杂问题;通过融合时序卷积神经网络(TCN)提取的客流时间序列特征和可预知特征状态集构建了长短期记忆神经网络(LSTM)层输入,组合模型学习客流与外部影响因素的长短期依赖,从而实现常规日、节假日、不同天气等多场景下的短期客流预测。基于某西南城市地铁刷卡交易数据,对比差分整合移动平均自回归模型(ARIMA)、TCN、LSTM及TCN-LSTM模型的短期客流预测结果,得出组合模型的总体平均绝对误差(MAE)值比其他方法低27%~48%,均方误差(MSE)值低13%~35%,平均绝对百分比误差(MAPE)值低2.8%~6.7%,上述3项指标均表明TCN-LSTM模型的客流预测效果更好。此外,对比实验表明通过融入提取的可预知特征数据,TCN-LSTM模型在测试集上的预测误差评价指标明显降低,所提方法能有效提高地铁短期客流预测精度。 展开更多
关键词 城市轨道交通 客流预测 长短期记忆神经网络(LSTM) 时序卷积神经网络(tcn) Spearman相关系数
下载PDF
融合距离阈值和双向TCN的时空注意力行人轨迹预测模型
14
作者 王红霞 聂振凯 钟强 《计算机应用研究》 CSCD 北大核心 2024年第11期3303-3310,共8页
为解决因缺乏部分行人建模思想、缺少时间维度的全局视野和忽略行人交互模式多样性,而导致交互建模不充分、低预测精度等问题,提出基于Social-STGCNN(social spatio-temporal graph convolutional neural network)的改进模型STG-DTBTA(s... 为解决因缺乏部分行人建模思想、缺少时间维度的全局视野和忽略行人交互模式多样性,而导致交互建模不充分、低预测精度等问题,提出基于Social-STGCNN(social spatio-temporal graph convolutional neural network)的改进模型STG-DTBTA(spatio-temporal graph distance threshold Bi-TCN attention)。首先,构建PPM(partial pedestrian module)模块,对不满足距离阈值等约束条件的行人交互连接剪枝以去噪。其次,引入时空注意力机制,空间注意力动态分配交互权重,并设置多个注意力头以处理交互多样性问题;时间注意力捕捉时序数据的时间依赖关系。最后,采用双向TCN增加全局视野以捕捉轨迹数据中的动态模式和趋势,并采用门控机制融合双向特征。在ETH和UCY数据集上的实验结果表明,与Social-STGCNN相比,STG-DTBTA在维持参数量与推理时间接近的情况下,ADE平均降低8%,FDE平均降低16%。STG-DTBTA具有良好的交互建模能力、模型性能和预测效果。 展开更多
关键词 行人轨迹预测 部分行人建模 距离阈值 时空注意力机制 双向tcn 门控机制
下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
15
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
下载PDF
基于TCN-BiLSTM-Attention-ESN的光伏功率预测
16
作者 时培明 郭轩宇 +3 位作者 杜清灿 许学方 贺长波 李瑞雄 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期304-316,共13页
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳... 针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 展开更多
关键词 光伏发电功率 预测 神经网络 回声状态网络 时间卷积网络 双向长短期记忆网络
下载PDF
改进TCN结合Bi-GRU的人体动作识别方法
17
作者 路永乐 罗毅 +3 位作者 肖轩 粟萍 李娜 修蔚然 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第5期1015-1022,共8页
针对传统人体动作识别方法特征提取不完善和泛化性能不足导致识别精度不高的问题,提出一种基于深度学习的动作识别模型。改进了传统时域卷积网络(TCN),逐层指数级缩减空洞率,优化了时域卷积的残差结构,实现在浅层网络中提取到长时间间... 针对传统人体动作识别方法特征提取不完善和泛化性能不足导致识别精度不高的问题,提出一种基于深度学习的动作识别模型。改进了传统时域卷积网络(TCN),逐层指数级缩减空洞率,优化了时域卷积的残差结构,实现在浅层网络中提取到长时间间隔数据之间的时域特征和规范网络输出。重构结构进一步结合双向门控循环单元网络(Bi-GRU),提取数据局部特征输入到全连接层整合特征并进行Softmax分类。实验表明,提出的模型在自建数据集和公开数据集UCI-HAR上保持较低参数量的同时,准确率分别达到99.61%和94.16%,具备可靠的识别性能。 展开更多
关键词 人体动作识别 惯性传感器 时域卷积网络 双向门控循环单元
下载PDF
基于MTCN-Informer的铁矿球团工艺预测模型
18
作者 廖雪超 朱晨辉 +2 位作者 赵昊裔 向桂宏 刘宗宇 《计算机技术与发展》 2024年第9期188-194,共7页
成品球团流量的预测是生产过程的关键,它决定着整个生产的效率和产量。铁矿球团链箅机—回转窑是生产铁矿石制备高品质铁合金的重要工艺过程之一,具有大时滞、参数庞杂、耦合关系复杂等特点,且成品球团流量波动剧烈,使球团流量难以预测... 成品球团流量的预测是生产过程的关键,它决定着整个生产的效率和产量。铁矿球团链箅机—回转窑是生产铁矿石制备高品质铁合金的重要工艺过程之一,具有大时滞、参数庞杂、耦合关系复杂等特点,且成品球团流量波动剧烈,使球团流量难以预测。为此,该文使用移动平均滤波器来平滑波动的数据,互信息法对庞杂的参数做特征选择,再利用基于自注意力机制的Informer球团流量预测模型,其降低传统自注意力机制的时间复杂度,提高了模型训练效率。同时,针对Informer模型的概率稀疏自注意力机制难以把握长时间序列波动的问题,通过TCN时间卷积网络来提取长时间序列的扩展信息依赖,同时结合Informer编码解码网络来处理上下文的信息,从而完成球团流量的精确预测。通过对工厂实际数据进行实验分析可知,与循环神经网络这类传统的深度学习模型相比,所提集成模型在预测精度、稳定性方面均为最优。 展开更多
关键词 球团流量预测 特征选择 时间卷积网络 编码解码网络 自注意力机制
下载PDF
基于TCN-BiLSTM网络的电力电缆故障诊断
19
作者 胡业林 王子涵 《佳木斯大学学报(自然科学版)》 CAS 2024年第4期15-18,43,共5页
为了提升电力电缆故障诊断技术的准确率,解决传统电力电缆诊断过程中操作复杂、可靠性低和精准度不够等问题,提出了一种基于TCN和BiLSTM的电力电缆故障诊断方法。该方法的核心是使用Matlab/Simulink搭建三相电缆的仿真模型,按照电缆的... 为了提升电力电缆故障诊断技术的准确率,解决传统电力电缆诊断过程中操作复杂、可靠性低和精准度不够等问题,提出了一种基于TCN和BiLSTM的电力电缆故障诊断方法。该方法的核心是使用Matlab/Simulink搭建三相电缆的仿真模型,按照电缆的实际参数设置模型,然后提取出电缆的四种短路故障:单相接地短路、双相接地短路、双相相间短路以及三相短路的电压信号。构建电缆故障样本集,搭建TCN和BiLSTM网络对电缆故障信号进行特征提取和序列捕捉,通过与TCN网络和CNN-BiLSTM网络进行实验对比,以及对从淮南某煤矿采集到的数据进行验证,证明该方法对电缆故障诊断具有良好的性能。 展开更多
关键词 电缆 故障诊断 时域卷积网络 双向长短时记忆网络 短路故障
下载PDF
基于STE-TCN的中短期电力负荷预测
20
作者 郑晓亮 束庆宇 《重庆工商大学学报(自然科学版)》 2024年第6期59-64,共6页
目的 针对传统电力负荷预测模型对长序列预测精度低的问题,提出一种结合跳级卷积连接与时间编码网络的新型时序卷积神经网络(TCN)模型——STE-TCN模型。方法 首先对TCN模型加入跨周期的膨胀卷积通道(Skip-convolution)提取电力数据周期... 目的 针对传统电力负荷预测模型对长序列预测精度低的问题,提出一种结合跳级卷积连接与时间编码网络的新型时序卷积神经网络(TCN)模型——STE-TCN模型。方法 首先对TCN模型加入跨周期的膨胀卷积通道(Skip-convolution)提取电力数据周期信息;再进行特征融合得到Skip-TCN网络,使网络抓取周期规律,增加信息利用长度;最后设计日期编码网络(Time encoding network)捕捉生活周期和季节性特征,与Skip-TCN进行特征融合得到STE-TCN模型,实现对电力负荷数据长序列预测。结果 实验表明:在与TCN模型和传统时序网络的对比下,Skip-TCN的预测精度均有提升,在预测长度更长的测试上提升尤为明显。结论 实验结果验证了通过对更长跨度时序关系的捕捉,STE-TCN网络改进方法有效提升了对长序列电力负荷的预测精度。 展开更多
关键词 中短期负荷预测 长序列预测 时序卷积网络 周期性关系 日期编码
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部