Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillat...Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the multi-step temporal discretization procedure is to use variable time step with strong stability preserving (SSP). The multi-step tem- poral discretization methods can make full use of computed information with HWENO spatial discretization by holding the former computational values. Extensive numerical experiments are presented to demonstrate that the finite volume HWENO schemes with multi-step diseretization can achieve high order accuracy and maintain non-oscillatory properties near discontinuous region of the solution.展开更多
In this article, the fmite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model ...In this article, the fmite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model (FEM) is the results choosing the small time step △t or the large element size L and using the non-diagonal storage matrix. The mechanism for this phenomenon is explained by the negative weighting factor of implicit part in the discretized equations. To avoid spurious oscillation solution, the criteria on the selection of △t and L for quasi-3-D groundwater flow simulations were identified. An application example of quasi-3-D groundwater flow simulation was presented to verify the criteria. The results indicate that temporal discretization scale has significant impact on the spurious oscillations in the finite-element solutions, and the spurious oscillations can be avoided in solving practical quasi-3-D groundwater flow problems if the criteria are satisfied.展开更多
A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical schem...A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical scheme linear while preserving the nonlinear energy stability,we make use of the scalar auxiliary variable(SAV)approach,in which a modified Crank-Nicolson is applied for the surface diffusion part.The energy stability could be derived a modified form,in comparison with the standard Crank-Nicolson approximation to the surface diffusion term.Such an energy stability leads to an H2 bound for the numerical solution.In addition,this H2 bound is not sufficient for the optimal rate convergence analysis,and we establish a uniform-in-time H3 bound for the numerical solution,based on the higher order Sobolev norm estimate,combined with repeated applications of discrete H¨older inequality and nonlinear embeddings in the Fourier pseudo-spectral space.This discrete H3 bound for the numerical solution enables us to derive the optimal rate error estimate for this alternate SAV method.A few numerical experiments are also presented,which confirm the efficiency and accuracy of the proposed scheme.展开更多
To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration scheme...To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration schemes for the discretized Kohn-Sham Density Functional Theory model,with which the iterative approximations are guaranteed to converge to the Kohn-Sham orbitals without any orthogonalization as long as the initial orbitals are orthogonal and the time step sizes are given properly.In addition,we present a feasible and efficient approach to get suitable time step sizes and report some numerical experiments to validate our theory.展开更多
文摘Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we construct a class of high order multi-step temporal discretization procedure for finite volume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic conservation laws. The key feature of the multi-step temporal discretization procedure is to use variable time step with strong stability preserving (SSP). The multi-step tem- poral discretization methods can make full use of computed information with HWENO spatial discretization by holding the former computational values. Extensive numerical experiments are presented to demonstrate that the finite volume HWENO schemes with multi-step diseretization can achieve high order accuracy and maintain non-oscillatory properties near discontinuous region of the solution.
文摘In this article, the fmite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model (FEM) is the results choosing the small time step △t or the large element size L and using the non-diagonal storage matrix. The mechanism for this phenomenon is explained by the negative weighting factor of implicit part in the discretized equations. To avoid spurious oscillation solution, the criteria on the selection of △t and L for quasi-3-D groundwater flow simulations were identified. An application example of quasi-3-D groundwater flow simulation was presented to verify the criteria. The results indicate that temporal discretization scale has significant impact on the spurious oscillations in the finite-element solutions, and the spurious oscillations can be avoided in solving practical quasi-3-D groundwater flow problems if the criteria are satisfied.
文摘A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical scheme linear while preserving the nonlinear energy stability,we make use of the scalar auxiliary variable(SAV)approach,in which a modified Crank-Nicolson is applied for the surface diffusion part.The energy stability could be derived a modified form,in comparison with the standard Crank-Nicolson approximation to the surface diffusion term.Such an energy stability leads to an H2 bound for the numerical solution.In addition,this H2 bound is not sufficient for the optimal rate convergence analysis,and we establish a uniform-in-time H3 bound for the numerical solution,based on the higher order Sobolev norm estimate,combined with repeated applications of discrete H¨older inequality and nonlinear embeddings in the Fourier pseudo-spectral space.This discrete H3 bound for the numerical solution enables us to derive the optimal rate error estimate for this alternate SAV method.A few numerical experiments are also presented,which confirm the efficiency and accuracy of the proposed scheme.
基金This work was supported by the National Key R&D Program of China under grants 2019YFA0709600,2019YFA0709601the National Natural Science Foundation of China under grant 12021001.
文摘To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration schemes for the discretized Kohn-Sham Density Functional Theory model,with which the iterative approximations are guaranteed to converge to the Kohn-Sham orbitals without any orthogonalization as long as the initial orbitals are orthogonal and the time step sizes are given properly.In addition,we present a feasible and efficient approach to get suitable time step sizes and report some numerical experiments to validate our theory.