期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Event Temporal Relation Extraction with Attention Mechanism and Graph Neural Network 被引量:2
1
作者 Xiaoliang Xu Tong Gao +1 位作者 Yuxiang Wang Xinle Xuan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第1期79-90,共12页
Event temporal relation extraction is an important part of natural language processing.Many models are being used in this task with the development of deep learning.However,most of the existing methods cannot accurate... Event temporal relation extraction is an important part of natural language processing.Many models are being used in this task with the development of deep learning.However,most of the existing methods cannot accurately obtain the degree of association between different tokens and events,and event-related information cannot be effectively integrated.In this paper,we propose an event information integration model that integrates event information through multilayer bidirectional long short-term memory(Bi-LSTM)and attention mechanism.Although the above scheme can improve the extraction performance,it can still be further optimized.To further improve the performance of the previous scheme,we propose a novel relational graph attention network that incorporates edge attributes.In this approach,we first build a semantic dependency graph through dependency parsing,model a semantic graph that considers the edges’attributes by using top-k attention mechanisms to learn hidden semantic contextual representations,and finally predict event temporal relations.We evaluate proposed models on the TimeBank-Dense dataset.Compared to previous baselines,the Micro-F1 scores obtained by our models improve by 3.9%and 14.5%,respectively. 展开更多
关键词 temporal relation extraction neural network attention mechanism graph attention network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部