期刊文献+
共找到5,768篇文章
< 1 2 250 >
每页显示 20 50 100
Multiple sclerosis is at a checkpoint: advancing the program
1
作者 Brandon C.Smith Jessica L.Williams 《Neural Regeneration Research》 SCIE CAS 2025年第3期811-812,共2页
Multiple sclerosis(MS) is a chronic inflammatory and demyelinating disease of the central nervous system(CNS). Patients with MS experience sensory and motor function loss due to myelin and/or axon damage perpetuated b... Multiple sclerosis(MS) is a chronic inflammatory and demyelinating disease of the central nervous system(CNS). Patients with MS experience sensory and motor function loss due to myelin and/or axon damage perpetuated by infiltrating immune cells(Hauser and Cree, 2020). 展开更多
关键词 Hauser sclerosis DAMAGE
下载PDF
Beginning from the end:the presynaptic terminal as a pathomechanism hub in frontotemporal dementia and amyotrophic lateral sclerosis
2
作者 Laura Huggon Emma L.Clayton 《Neural Regeneration Research》 SCIE CAS 2025年第11期3217-3218,共2页
Frontotemporal dementia and amyotrophic lateral sclerosis:Frontotemporal dementia(F T D)and amyo t rophic lateral sclerosis(ALS)are neurodegenerative diseases with significant overlapping attributes.While these neurod... Frontotemporal dementia and amyotrophic lateral sclerosis:Frontotemporal dementia(F T D)and amyo t rophic lateral sclerosis(ALS)are neurodegenerative diseases with significant overlapping attributes.While these neurodegenerative diseases affect different neuronal populations(with FTD affecting neurons of the frontal and temporal lobes,and ALS affecting upper and lower motor neurons),these two diseases are complexly intertwined.FTD and ALS exist on a disease spectrum,with shared genetic causes,clinical presentations,and pathologies. 展开更多
关键词 DISEASES amyotrophic sclerosis
下载PDF
Carboplatin restores neuronal toxicity in FUS-linked amyotrophic lateral sclerosis
3
作者 Kiyoung Kim 《Neural Regeneration Research》 SCIE CAS 2025年第8期2319-2320,共2页
Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,an... Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,and ultimately,respiratory failure(Cha and Kim,2022). 展开更多
关键词 PARALYSIS sclerosis RESPIRATORY
下载PDF
Biochemical dissection of STAT3 signaling in amyotrophic lateral sclerosis
4
作者 Savina Apolloni Nadia D’Ambrosi 《Neural Regeneration Research》 SCIE CAS 2025年第11期3229-3230,共2页
Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons,clinically marked by muscle atrophy and weakness.Although the clinical course is ... Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons,clinically marked by muscle atrophy and weakness.Although the clinical course is highly variable,the average time from the onset of symptoms to the need for respiratory support or death is 3-5 years.ALS is the most prevalent motor neuron disease in adults,occurring at a rate of 2 per 100,000 individuals and affecting 5.4 per 100,000 individuals overall. 展开更多
关键词 STAT3 DISSECTION sclerosis
下载PDF
Disruption of neuronal actin barrier promotes the entry of disease-implicated proteins to exacerbate amyotrophic lateral sclerosis pathology
5
作者 Mikio Shimizu Tatsusada Okuno 《Neural Regeneration Research》 SCIE CAS 2025年第9期2589-2590,共2页
Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle we... Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle weakness,resulting in death from respiratory paralysis,which usually occurs 2-4 years after clinical onset(Goutman et al.,2022). 展开更多
关键词 PARALYSIS sclerosis
下载PDF
Small extrachromosomal circular DNA in amyotrophic lateral sclerosis matter
6
作者 Marcos J.Arauzo-Bravo Daniela Gerovska +1 位作者 Matthias Schwab Alexandra Kretz 《Neural Regeneration Research》 SCIE CAS 2025年第5期1411-1413,共3页
Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity an... Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators. 展开更多
关键词 amyotrophic sclerosis
下载PDF
Translational challenges in amyotrophic lateral sclerosis therapy with macrophage migration inhibitory factor
7
作者 Leenor Alfahel Aleksandar Rajkovic Adrian Israelson 《Neural Regeneration Research》 SCIE CAS 2025年第9期2583-2584,共2页
Macrophage migration inhibitory factor(MIF):MIF acts as a pleiotropic inflammatory mediator,playing regulatory roles in innate and adaptive immunity,neuroinflammation,neuroendocrine functions,and nervous system develo... Macrophage migration inhibitory factor(MIF):MIF acts as a pleiotropic inflammatory mediator,playing regulatory roles in innate and adaptive immunity,neuroinflammation,neuroendocrine functions,and nervous system development(Matejuk et al.,2024).In recent years,MIF has attra cted significant inte rest from research groups as a potential target for the treatment of various neurodegenerative diseases,including Alzheimer's disease,Parkinson's disease,multiple sclerosis,and glioblastoma(Matejuk et al.,2024). 展开更多
关键词 IMMUNITY sclerosis
下载PDF
Treating amyotrophic lateral sclerosis with allogeneic Schwann cell-derived exosomal vesicles: a case report
8
作者 Pascal J.Goldschmidt-Clermont Aisha Khan +8 位作者 George Jimsheleishvili Patricia Graham Adriana Brooks Risset Silvera Alexander J.P.Goldschmidt Damien D.Pearse W.Dalton Dietrich Allan D.Levi James D.Guest 《Neural Regeneration Research》 SCIE CAS 2025年第4期1207-1216,共10页
Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann c... Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe. 展开更多
关键词 ALLOGENEIC amyotrophic lateral sclerosis EXOSOMES INFUSION neuromuscular junction Schwann cell
下载PDF
Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies
9
作者 Guangyong Zhang Qing Yao +9 位作者 Chubing Long Pengcheng Yi Jiali Song Luojia Wu Wei Wan Xiuqin Rao Yue Lin Gen Wei Jun Ying Fuzhou Hua 《Neural Regeneration Research》 SCIE CAS 2025年第3期779-793,共15页
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple rol... Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood–brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases. 展开更多
关键词 blood–brain barrier MACROPHAGES MONOCYTES multiple sclerosis NEUROINFLAMMATION review therapy
下载PDF
Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis
10
作者 Yongting Lv Hongfu Li 《Neural Regeneration Research》 SCIE CAS 2025年第9期2556-2570,共15页
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective d... Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings. 展开更多
关键词 amyotrophic lateral sclerosis BIOMARKER blood biomarkers diagnosis glial fibrillary acidic protein neurofilament light chain PROGNOSIS TAR DNA-binding protein 43
下载PDF
The burden of upper motor neuron involvement is correlated with the bilateral limb involvement interval in patients with amyotrophic lateral sclerosis:a retrospective observational study
11
作者 Jieying Wu Shan Ye +2 位作者 Xiangyi Liu Yingsheng Xu Dongsheng Fan 《Neural Regeneration Research》 SCIE CAS 2025年第5期1505-1512,共8页
Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ... Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis. 展开更多
关键词 amyotrophic lateral sclerosis bilateral limb involvement Cox proportional hazards regression model horizontal spread restricted cubic spline analysis time interval upper motor neuron vertical spread
下载PDF
Multifaceted superoxide dismutase 1 expression in amyotrophic lateral sclerosis patients:a rare occurrence?
12
作者 Ilaria Martinelli Jessica Mandrioli +5 位作者 Andrea Ghezzi Elisabetta Zucchi Giulia Gianferrari Cecilia Simonini Francesco Cavallieri Franco Valzania 《Neural Regeneration Research》 SCIE CAS 2025年第1期130-138,共9页
Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ... Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS. 展开更多
关键词 amyotrophic lateral sclerosis(ALS) AUTONOMIC extramotor GENOTYPE-PHENOTYPE multisystem involvement Parkinson’s disease sensory SOD1 superoxide dismutase 1 URINARY vocal cord palsy
下载PDF
Gut flora in multiple sclerosis:implications for pathogenesis and treatment 被引量:2
13
作者 Weiwei Zhang Ying Wang +2 位作者 Mingqin Zhu Kangding Liu Hong-Liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1480-1488,共9页
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d... Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis. 展开更多
关键词 gut flora gut-brain axis multiple sclerosis PATHOGENESIS treatment
下载PDF
Circulating proteomic biomarkers for diagnosing sporadic amyotrophic lateral sclerosis:a cross-sectional study 被引量:5
14
作者 Lu He Qinming Zhou +5 位作者 Chaoyang Xiu Yaping Shao Dingding Shen Huanyu Meng Weidong Le Sheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1842-1848,共7页
Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect ... Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters. 展开更多
关键词 amyotrophic lateral sclerosis cathelicidin-related antimicrobial peptide HEMOGLOBIN label-free quantitative proteomics multi-protein combined diagnostic panel serum biomarkers talin-1 translationally-controlled tumor protein ZYXIN
下载PDF
The pathogenic mechanism of TAR DNA-binding protein 43(TDP-43)in amyotrophic lateral sclerosis 被引量:2
15
作者 Xinxin Wang Yushu Hu Renshi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期800-806,共7页
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t... The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation). 展开更多
关键词 amyotrophic lateral sclerosis axonal transport liquid-liquid phase separation noncellular autonomous functions oxidative stress PATHOGENESIS post-translational modification protein quality control system stress granules TAR DNA-binding protein 43(TDP-43)
下载PDF
Primary lateral sclerosis:more than just an upper motor neuron disease
16
作者 Ee Ling Tan Jasmin Lope Peter Bede 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1881-1882,共2页
Advances in clinical care and recent research achievements:Primary lateral sclerosis(PLS)has traditionally been regarded as a pure upper motor neuron condition,a view perpetuated by most medical textbooks.
关键词 sclerosis CLINICAL traditionally
下载PDF
Unraveling the potential of acute intermittent hypoxia as a strategy for inducing robust repair in multiple sclerosis
17
作者 Valerie M.K.Verge Nataliya Tokarska Justin M.Naniong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2339-2340,共2页
Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contrib... Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contribute to disability.Inducing efficient and effective repair programs following demyelination is a major goal and challenge in MS.Conventional MS therapies focus largely on modulating the immune aspects of the disease contributing to lesions.While this alleviates some symptoms and mitigates damage,it does not tackle the fundamental challenge of effective remyelination,which few MS patients experience,especially in the progressive phase of the disease. 展开更多
关键词 sclerosis DEGENERATION DAMAGE
下载PDF
Status of biomarker development for frontotemporal dementia and amyotrophic lateral sclerosis
18
作者 Yue Yang Qi Cheng +1 位作者 Jianqun Gao Woojin Scott Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2117-2118,共2页
Frontotemporal dementia(FTD) and amyotrophic lateral sclerosis(ALS) are neurodegenerative diseases that belong to the same disease spectrum,with overlapping of genetic and pathological features.Genetic mutations in TA... Frontotemporal dementia(FTD) and amyotrophic lateral sclerosis(ALS) are neurodegenerative diseases that belong to the same disease spectrum,with overlapping of genetic and pathological features.Genetic mutations in TARDBP,C9ORF72,MAPT,and GRN have been identified in these diseases. 展开更多
关键词 amyotrophic sclerosis DISEASES
下载PDF
Metabolites and micronutrition in modulating amyotrophic lateral sclerosis
19
作者 Katerina Claud Jun Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1183-1184,共2页
Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease.The majority of ALS cases are sporadic with only about 20%of familial forms.Even in families with genetic predisposition,there is significan... Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease.The majority of ALS cases are sporadic with only about 20%of familial forms.Even in families with genetic predisposition,there is significant phenotypic variability,suggesting that ALS onset may be triggered by a combination of genetic factors. 展开更多
关键词 sclerosis amyotrophic CASES
下载PDF
MAP4K inhibition as a potential therapy for amyotrophic lateral sclerosis
20
作者 Shuaipeng Ma Chun-Li Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1639-1640,共2页
Amyotrophic lateral sclerosis(ALS)is a rare neurological disease,featuring gradual loss of muscle controls due to degeneration of motor neurons.Unfortunately,there is currently no cure for ALS.The available therapies ... Amyotrophic lateral sclerosis(ALS)is a rare neurological disease,featuring gradual loss of muscle controls due to degeneration of motor neurons.Unfortunately,there is currently no cure for ALS.The available therapies only offer a limited extension of survival by several months,begging for more options of therapeutics. 展开更多
关键词 DEGENERATION sclerosis MAP4
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部