期刊文献+
共找到954篇文章
< 1 2 48 >
每页显示 20 50 100
Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy
1
作者 Liu Shi Pan-Pan Lu +2 位作者 Guang-Chun Dai Ying-Juan Li Yun-Feng Rui 《World Journal of Stem Cells》 SCIE 2021年第9期1338-1348,共11页
Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have r... Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes,including disorganized arrangement of collagen fibers,microtears,calcium nodules,and advanced glycation end product(AGE)deposition.Tendon-derived stem/progenitor cells(TSPCs)were found to maintain hemostasis and to participate in the reversal of tendinopathy.We also discovered the aberrant osteochondrogenesis of TSPCs in vitro.However,the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear.In this review,we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo. 展开更多
关键词 TENDINOPATHY Diabetes mellitus tendon stem/progenitor cells Advanced glycation end products
下载PDF
Tendon stem/progenitor cell ageing: Modulation and rejuvenation 被引量:2
2
作者 Guang-Chun Dai Ying-Juan Li +2 位作者 Min-Hao Chen Pan-Pan Lu Yun-Feng Rui 《World Journal of Stem Cells》 SCIE 2019年第9期677-692,共16页
Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury.The role of tendon stem/progenitor cells(TSPCs)in tendon maintena... Tendon ageing is a complicated process caused by multifaceted pathways and ageing plays a critical role in the occurrence and severity of tendon injury.The role of tendon stem/progenitor cells(TSPCs)in tendon maintenance and regeneration has received increasing attention in recent years.The decreased capacity of TSPCs in seniors contributes to impaired tendon functions and raises questions as to what extent these cells either affect,or cause ageing,and whether these age-related cellular alterations are caused by intrinsic factors or the cellular environment.In this review,recent discoveries concerning the biological characteristics of TSPCs and age-related changes in TSPCs,including the effects of cellular epigenetic alterations and the mechanisms involved in the ageing process,are analyzed.During the ageing process,TSPCs ageing might occur as a natural part of the tendon ageing,but could also result from decreased levels of growth factor,hormone deficits and changes in other related factors.Here,we discuss methods that might induce the rejuvenation of TSPC functions that are impaired during ageing,including moderate exercise,cell extracellular matrix condition,growth factors and hormones;these methods aim to rejuvenate the features of youthfulness with the ultimate goal of improving human health during ageing. 展开更多
关键词 tendon stem/progenitor cell Ageing MECHANISMS MODULATION REJUVENATION
下载PDF
One-step cell biomanufacturing platform:porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo 被引量:1
3
作者 Lin Feng Da Li +10 位作者 Yao Tian Chengshun Zhao Yun Sun Xiaolong Kou Jun Wu Liu Wang Qi Gu Wei Li Jie Hao Baoyang Hu Yukai Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期458-464,共7页
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p... Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation. 展开更多
关键词 axonal integrity cell cryopreservation cellular environment cellular niche cell replacement therapy dopaminergic progenitors human pluripotent stem cell mechanical damage neuronal cell delivery Parkinson’s disease small-aperture gelatin microcarriers
下载PDF
The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke
4
作者 Yiqing Wang Chuheng Chang +2 位作者 Renzhi Wang Xiaoguang Li Xinjie Bao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1998-2003,共6页
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Altho... Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke. 展开更多
关键词 ischemic stroke mesenchymal stem cells metabolomics multilevel omics neural stem/progenitor cells NEUROINFLAMMATION PATHOPHYSIOLOGY proteomics stem cell therapy TRANSCRIPTOMES
下载PDF
Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model
5
作者 Julius M.Mayer Christian Krug +4 位作者 Maximilian M.Saller Annette Feuchtinger Riccardo E.Giunta Elias Volkmer Thomas Holzbach 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期652-656,共5页
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati... Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice. 展开更多
关键词 adipose-derived progenitor cells adipose-derived multipotent stem/progenitor cell autologous nerve graft fibrin conduit hypoxia hypoxic pre-conditioning nerve defect nerve tissue engineering peripheral nerve regeneration regenerative medicine
下载PDF
Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders
6
作者 Nai-Yu Ke Tian-Yi Zhao +2 位作者 Wan-Rong Wang Yu-Tong Qian Chao Liu 《World Journal of Stem Cells》 SCIE 2023年第4期235-247,共13页
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re... Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications. 展开更多
关键词 Neural stem/progenitor cell BRG1/BRM-associated factor complex SUBUNIT Proliferation DIFFERENTIATION Neural developmental disorde
下载PDF
Transplantation of bone marrow-derived endothelial progenitor cells and hepatocyte stem cells from liver fibrosis rats ameliorates liver fibrosis 被引量:9
7
作者 Ling Lan Ran Liu +5 位作者 Ling-Yun Qin Peng Cheng Bo-Wei Liu Bing-Yong Zhang Song-Ze Ding Xiu-Ling Li 《World Journal of Gastroenterology》 SCIE CAS 2018年第2期237-247,共11页
AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver... AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver fibrosis environment.METHODS The liver fibrosis rat models were induced with carbon tetrachloride injections for 6 wk. BM-EPCs from rats with liver fibrosis were obtained by different rates of adherence and culture induction. BDHSCs from rats with liver fibrosis were isolated by magnetic bead cell sorting. Tracing analysis was conducted by labeling EPCs with PKH26 in vitro to show EPC location in the liver. Finally, BM-EPCs and/or BDHSCs transplantation into rats with liver fibrosis were performed to evaluate the effectiveness of BM-EPCs and/or BDHSCs on liver fibrosis.RESULTS Normal functional BM-EPCs from liver fibrosis rats were successfully obtained. The co-expression level of CD133 and VEGFR2 was 63.9% ± 2.15%. Transplanted BM-EPCs were located primarily in/near hepatic sinusoids. The combined transplantation of BM-EPCs and BDHSCs promoted hepatic neovascularization, liver regeneration and liver function, and decreased collagen formation and liver fibrosis degree. The VEGF levels were increased in the BM-EPCs(707.10 ± 54.32) and BM-EPCs/BDHSCs group(615.42 ± 42.96), compared with those in the model group and BDHSCs group(P < 0.05). Combination of BM-EPCs/BDHSCs transplantation induced maximal up-regulation of PCNA protein and HGF m RNA levels. The levels of alanine aminotransferase(AST), aspartate aminotransferase, total bilirubin(TBIL), prothrombin time(PT) and activated partial thromboplastin time in the BMEPCs/BDHSCs group were significantly improved, to be equivalent to normal levels(P > 0.05) compared with those in the BDHSC(AST, TBIL and PT, P < 0.05) and BM-EPCs(TBIL and PT, P < 0.05) groups. Transplantation of BM-EPCs/BDHSCs combination significantly reduced the degree of liver fibrosis(staging score of 1.75 ± 0.25 vs BDHSCs 2.88 ± 0.23 or BMEPCs 2.75 ± 0.16, P < 0.05).CONCLUSION The combined transplantation exhibited maximal therapeutic effect compared to that of transplantation of BM-EPCs or BDHSCs alone. Combined transplantation of autogenous BM-EPCs and BDHSCs may represent a promising strategy for the treatment of liver fibrosis, which would eventually prevent cirrhosis and liver cancer. 展开更多
关键词 Bone marrow Endothelial progenitor cells LIVER stem cell cell TRANSPLANTATION LIVER fibrosis
下载PDF
Comparison of phenotypic markers and neural differentiation potential of multipotent adult progenitor cells and mesenchymal stem cells 被引量:10
8
作者 Saurabh Pratap Singh Naresh Kumar Tripathy Soniya Nityanand 《World Journal of Stem Cells》 SCIE CAS 2013年第2期53-60,共8页
AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were estab... AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage. 展开更多
关键词 Bone marrow HUMAN MULTIPOTENT adult progenitor cellS HUMAN mesenchymal stem cellS PHENOTYPIC MARKERS Neural differentiation
下载PDF
Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries 被引量:9
9
作者 Patompon Wongtrakoongate 《World Journal of Stem Cells》 SCIE CAS 2015年第1期137-148,共12页
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor ... Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases(DNMT) 1, DNMT3 A and DNMT3 B via 5-Azacytidine(Aza) and 5-Aza-2'-deoxycytidine(Aza-d C) has proved to be successfultoward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza andAza-d C, and of their apoptotic- and differentiation-inducingeffects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicatedin cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achievedthrough eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their "malignant memory". 展开更多
关键词 CANCER stem and progenitor cells DNAMETHYLATION EPIGENETIC therapy Aza-cytidine Azadeoxycytidine
下载PDF
Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells 被引量:7
10
作者 Ying Hu Jun Liang +4 位作者 Hongping Cui Xinmei Wang Hua Rong Bin Shao Hao Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第19期1783-1792,共10页
Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, ... Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, a Wnt/13 catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindleshaped or fibroblastlike Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical stain ing and reversetranscription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly downregulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro. 展开更多
关键词 neural regeneration stem cells Wharton's jelly mesenchymal stem cells microenvironment induc-tion reagent induction retinal progenitor cells nerve cells retinal disease grants-supported paper NEUROREGENERATION
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
11
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Propofol and remifentanil at moderate and high concentrations affect proliferation and differentiation of neural stem/progenitor cells 被引量:7
12
作者 Qing Li Jiang Lu Xianyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期2002-2007,共6页
Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, wheth... Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, whether this process affects neural stem/progenitor cell proliferation and differenti-ation remains unknown. In the present study, we applied propofol and remifentanil, alone or in combination, at low, moderate or high concentrations (1, 2–2.5 and 4–5 times the clinically effective blood drug concentration), to neural stem/progenitor cells from the hippocampi of newborn rat pups. Low concentrations of propofol, remifentanil or both had no noticeable effect on cell proliferation or differentiation; however, moderate and high concentrations of propofol and/or remifentanil markedly suppressed neural stem/progenitor cell proliferation and differen-tiation, and induced a decrease in [Ca^2+]i during the initial stage of neural stem/progenitor cell differentiation. We therefore propose that propofol and remifentanil interfere with the prolifer-ation and differentiation of neural stem/progenitor cells by altering [Ca^2+]i. Our ifndings suggest that propofol and/or remifentanil should be used with caution in pediatric anesthesia. 展开更多
关键词 nerve regeneration PROPOFOL REMIFENTANIL neural stem cells neural progenitor cells PROLIFERATION apoptosis DIFFERENTIATION [Ca^2+]i neural regeneration
下载PDF
Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues 被引量:10
13
作者 Urszula Kozlowska Agnieszka Krawczenko +4 位作者 Katarzyna Futoma Tomasz Jurek Marta Rorat Dariusz Patrzalek Aleksandra Klimczak 《World Journal of Stem Cells》 SCIE CAS 2019年第6期347-374,共28页
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characte... BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine. 展开更多
关键词 MESENCHYMAL stem/progenitor cells Bone marrow MSCS ADIPOSE tissue MSCS Muscle-derived MSCS Skin-derived MSCS Cytokines and TROPHIC factors of MSCS Spontaneous fusion of MSCS
下载PDF
Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue 被引量:7
14
作者 Yu-Ying Chen Sheng-Teng He +5 位作者 Fu-Hua Yan Peng-Fei Zhou Kai Luo Yan-Ding Zhang Yin Xiao Min-Kui Lin 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第4期213-222,共10页
Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engin... Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon- related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a ootential stem cell source for tissue enEineerin~ of tendon-like tissue. 展开更多
关键词 dental pulp stem cells in vivo model mechanical loading tendon engineering
下载PDF
Expression change of stem cell-derived neural stem/progenitor cell sup-porting factor gene in injured spinal cord of rats
15
作者 冯毅 高宜录 +1 位作者 丁斐 刘炎 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第3期165-169,共5页
Objective To explore the expression change of stem cell-derived neural stem/progenitor cell supporting factor (SDNSF) gene in the injuried spinal cord tissues of rats, and the relation between the expressions of SDN... Objective To explore the expression change of stem cell-derived neural stem/progenitor cell supporting factor (SDNSF) gene in the injuried spinal cord tissues of rats, and the relation between the expressions of SDNSF and nestin. Methods The spinal cord contusion model of rat was established according to Allen's falling strike method. The expression of SDNSF was studied by RT-PCR and in situ hybridization (ISH), and the expression of nestin was detected by immunochemistry. Results RT-PCR revealed that SDNSF mRNA was upregulated on day 4 after injury, peaked on day 8-12, and decreased to the sham operation level on day 16. ISH revealed that SDNSF mRNA was mainly expressed in the gray matter cells, probably neurons, of spinal cord. The immunohistochemistry showed that accompanied with SDNSF mRNA upregulation, the nestin-positive cells showed erupted roots, migrated peripherad and proliferation on the 8-day slice. However, the distribution pattern of these new cells was different from that of SDNSF-positive cells. Conclusion (1) SDNSF is expressed in the gray matter of spinal cord. The expression of SDNSF mRNA in the spinal cord varies with injured time. (2) The nestin-positive cells proliferate accompanied with spinal cord injury repair, but do not secrete SDNSF. 展开更多
关键词 stem cell-derived neural stem/progenitor cell supporting factor NESTIN spinal cord injury rat
下载PDF
Dysfunctional stem and progenitor cells impair fracture healing with age 被引量:4
16
作者 Diane R Wagner Sonali Karnik +10 位作者 Zachary J Gunderson Jeffery J Nielsen Alanna Fennimore Hunter J Promer Jonathan W Lowery M Terry Loghmani Philip S Low Todd O McKinley Melissa A Kacena Matthias Clauss Jiliang Li 《World Journal of Stem Cells》 SCIE CAS 2019年第6期281-296,共16页
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature;mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form... Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature;mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging;a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly. 展开更多
关键词 Fracture healing Aging Bone Angiogenesis MESENCHYMAL stem cellS ENDOTHELIAL progenitor cellS
下载PDF
Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro 被引量:4
17
作者 Jiang Lu Kehuan Lu Dongsheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第22期1688-1694,共7页
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differ... In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. 展开更多
关键词 neural stem cells neural progenitor cells fibroblast growth factor 8 Sonic Hedgehog signalpathway SECRETION dynamic DIFFERENTIATION NEURONS neural regeneration
下载PDF
Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells 被引量:3
18
作者 Wei-Hui Liu Li-Na Ren +2 位作者 Tao Chen Li-Ye Liu Li-Jun Tang 《World Journal of Gastroenterology》 SCIE CAS 2013年第41期7032-7041,共10页
Except for the most organized mature hepatocytes,liver stem/progenitor cells(LSPCs)can differentiate into many other types of cells in the liver including cholangiocytes.In addition,LSPCs are demonstrated to be able t... Except for the most organized mature hepatocytes,liver stem/progenitor cells(LSPCs)can differentiate into many other types of cells in the liver including cholangiocytes.In addition,LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells.Even more,under some bad conditions,these LSPCs could generate liver cancer stem like cells(LCSCs)through malignant transformation.In this review,we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs,especially differentiation of cholangiocytes,insulin-producing cells and LCSCs.First of all,to certificate the cell fates of LSPCs,the following three features need to be taken into account to perform accurate phenotyping:(1)morphological properties;(2)specific markers;and(3)functional assessment including in vivo transplantation.Secondly,to promote LSPCs differentiation,systematical attention should be paid to inductive materials(such as growth factors and chemical stimulators),progressive materials including intracellular and extracellular signaling pathways,and implementary materials(such as liver enriched transcriptive factors).Accordingly,some recommendations were proposed to standardize,optimize,and enrich the effective production of cholangiocyte-like cells out of LSPCs.At the end,the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed.The differentiation of LSPCs is a gradually progressing process,which consists of three main steps:initiation,progression and accomplishment.It’s the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs. 展开更多
关键词 LIVER stem/progenitor cells CHOLANGIOCYTES BILIARY DIFFERENTIATION Unbalanced distribution of materials cell therapy
下载PDF
Urine-derived stem/progenitor cells:A focus on their characterization and potential 被引量:8
19
作者 Perrine Burdeyron Sébastien Giraud +1 位作者 Thierry Hauet Clara Steichen 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1080-1096,共17页
Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult... Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult stem cells such as mesenchymal stem cells or pluripotent stem cells],urine-derived stem cells(USCs)have aroused interest in the past years.USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation.Importantly,they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure,which is broadly applicable,whereas most adult stem cell types require invasive procedure.Moreover,USCs can be differentiated into renal cell types.This is of high interest for renal cell therapy-based regenerative approaches.This review will firstly describe the isolation and characterization of USCs.We will specifically present USC phenotype,which is not an object of consensus in the literature,as well as detail their differentiation capacity.In the second part of this review,we will present and discuss the main applications of USCs.These include use as a substrate to generate human induced pluripotent stem cells,but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system.Importantly,we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes,which is a strategy being increasingly employed.In the last section,we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine. 展开更多
关键词 Urine-derived stem cells Urine progenitor cells EXOSOMES cell therapy Kidney injury and repair Regenerative medicine
下载PDF
Stem cell therapies in tendon-bone healing 被引量:8
20
作者 Yue Xu Wan-Xia Zhang +3 位作者 Li-Na Wang Yue-Qing Ming Yu-Lin Li Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2021年第7期753-775,共23页
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe.The key method of treating this kind of injury is the reconstruction operation.The suc... Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe.The key method of treating this kind of injury is the reconstruction operation.The success of this reconstructive process depends on the ability of the graft to incorporate into the bone.Recently,there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods.Stem cells like bone marrow mesenchymal stem cells(MSCs),tendon stem/progenitor cells,synovium-derived MSCs,adipose-derived stem cells,or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types,which have been widely used in tissue repair and regeneration.Thus,we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy. 展开更多
关键词 tendon BONE stem cell Anterior cruciate ligament Rotator cuff
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部