期刊文献+
共找到16,331篇文章
< 1 2 250 >
每页显示 20 50 100
Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing 被引量:1
1
作者 Fei Han Tian Li +4 位作者 Mengmeng Li Bingjun Zhang Yufeng Wang Yufang Zhu Chengtie Wu 《Bioactive Materials》 SCIE CSCD 2023年第2期29-40,共12页
Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery,however,this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity.Inspired by the high... Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery,however,this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity.Inspired by the high-performance exoskeleton of natural organisms,we set out to apply natural fish scale(FS)modified by calcium silicate nanoparticles(CS NPs)as a new biomaterial(CS-FS)to overcome the challenge.Benefit from its“Bouligand”microstructure,such FS-based scaffold maintained excellent tensile strength(125.05 MPa)and toughness(14.16 MJ/m^(3)),which are 1.93 and 2.72 times that of natural tendon respectively,allowing it to well meet the requirements for rotator cuff tendon repair.Additionally,CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction,(e.g.bone marrow mesenchymal stem cells(BMSCs),chondrocyte,and tendon stem/progenitor cells(TSPCs)).In both rat and rabbit rotator cuff tear(RCT)models,CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function,which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs.Therefore,natural fish scale-based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity. 展开更多
关键词 Fish scales Tendon repair High strength BIOACTIVITIES tendon-bone healing enhancement
原文传递
Fecal calprotectin and endoscopic scores: The cornerstones in clinical practice for evaluating mucosal healing in inflammatory bowel disease
2
作者 Marcia Henriques de Magalhães Costa Ligia Yukie Sassaki Júlio Maria Fonseca Chebli 《World Journal of Gastroenterology》 SCIE CAS 2024年第24期3022-3035,共14页
Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal t... Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal therapeutic goal in IBD management and can prevent IBD progression and reduce flares,hospitalization,surgery,intestinal damage,and colorectal cancer.Employing proactive disease and therapy assessment is essential to achieve better control of intestinal inflammation,even if subclinical,to alter the natural course of IBD.Periodic monitoring of fecal calprotectin(FC)levels and interval endoscopic evaluations are cornerstones for evaluating response/remission to advanced therapies targeting IBD,assessing MH,and detecting subclinical recurrence.Here,we comment on the article by Ishida et al Moreover,this editorial aimed to review the role of FC and endoscopic scores in predicting MH in patients with IBD.Furthermore,we intend to present some evidence on the role of these markers in future targets,such as histological and transmural healing.Additional prospective multicenter studies with a stricter MH criterion,standardized endoscopic and histopathological analyses,and virtual chromoscopy,potentially including artificial intelligence and other biomarkers,are desired. 展开更多
关键词 Fecal calprotectin Endoscopic scores Mucosal healing Histological healing Ulcerative colitis Inflammatory bowel diseases
下载PDF
Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing
3
作者 Nan-Yu Zou Ran Liu +18 位作者 Mei Huang Yu-Rui Jiao Jie Wei Yangzi Jiang Wen-Zhen He Min Huang Yi-Li Xu Ling Liu Yu-Chen Sun Mi Yang Qi Guo Yan Huang Tian Su Ye Xiao Wei-Shan Wang Chao Zeng Guang-Hua Lei Xiang-Hang Luo Chang-Jun Li 《Bone Research》 SCIE CAS CSCD 2024年第1期122-136,共15页
Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluse... Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals. 展开更多
关键词 healing UNION SENESCENCE
下载PDF
A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing
4
作者 Yaqi Geng Guoyin Chen +7 位作者 Ran Cao Hongmei Dai Zexu Hu Senlong Yu Le Wang Liping Zhu Hengxue Xiang Meifang Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期211-224,共14页
The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and s... The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and situational awareness.Here,we report an interactive self-regulation electronic system by mimicking the human thermos-reception system.The skin-inspired self-adaptive system is composed of two highly sensitive thermistors(thermal-response composite materials),and a low-power temperature control unit(Laserinduced graphene array).The biomimetic skin can realize self-adjusting in the range of 35–42℃,which is around physiological temperature.This thermoregulation system also contributed to skin barrier formation and wound healing.Across wound models,the treatment group healed~10%more rapidly compared with the control group,and showed reduced inflammation,thus enhancing skin tissue regeneration.The skin-inspired self-adaptive system holds substantial promise for nextgeneration robotic and medical devices. 展开更多
关键词 Thermo-reception SELF-REGULATION Flexible electronic system Wound healing
下载PDF
Antimicrobial,antibiofilm,angiogenesis,anti-inflammatory,and wound healing activities of zinc nanoparticles green synthesized using Ferula macrecolea extract
5
作者 Sultan F.Alnomasy 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第6期259-268,共10页
Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was ... Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs. 展开更多
关键词 Wound healing Antibacterial ANGIOGENESIS NANOMEDICINE Ferula macrecolea Inflammation
下载PDF
Porous nanofibrous dressing enables mesenchymal stem cell spheroid formation and delivery to promote diabetic wound healing
6
作者 Kexin Zhang Wenmin Zhang +4 位作者 Heng An Zhe Huang Yanzhen Wen Xiangyu Jiao Yongqiang Wen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期156-164,共9页
Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellul... Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellular spheroids,their therapeutic effect is enhanced.However,traditional culture platforms are inadequate for the efficient preparation and delivery of MSC spheroids,resulting in inefficiencies and inconveniences in MSC spheroid therapy.In this study,a three-dimensional porous nanofibrous dressing(NFD)is prepared using a combination of electrospinning and homogeneous freeze-drying.Using thermal crosslinking,the NFD not only achieves satisfactory elasticity but also maintains notable cytocompatibility.Through the design of its structure and chemical composition,the NFD allows MSCs to spontaneously form MSC spheroids with controllable sizes,serving as MSC spheroid delivery systems for diabetic wound sites.Most importantly,MSC spheroids cultured on the NFD exhibit improved secretion of vascular endothelial growth factor,basic fibroblast growth factor,and hepatocyte growth factor,thereby accelerating diabetic wound healing.The NFD provides a competitive strategy for MSC spheroid formation and delivery to promote diabetic wound healing. 展开更多
关键词 Electrospinning Homogenization Biomedical engineering Nanomaterials Stem cell spheroids Diabetic wound healing
下载PDF
Progress of Transmural Healing in Crohn’s Disease
7
作者 Yinan Han Xiaoping Tan 《Journal of Biosciences and Medicines》 2024年第5期276-292,共17页
Recently transmural healing (TH) has become a subject of increasing interest as a potential therapeutic purpose for inflammatory bowel disease (IBD). Crohn’s disease (CD) is characterized by chronic inflammation of t... Recently transmural healing (TH) has become a subject of increasing interest as a potential therapeutic purpose for inflammatory bowel disease (IBD). Crohn’s disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, which can involve any part of the digestive tract, and the lesions are usually discontinuous, with progressive and destructive transmural lesions that can lead to irreversible damage such as fibrotic strictures, complications such as fistulas and abscesses. Disease remission remains the primary goal of therapeutic management;however transmural healing is a very promising endpoint for monitoring treatment response. Along with small bowel imaging tests such as computed tomography scans Intestinal imaging (CTE), magnetic resonance intestinal imaging (MRE), intestinal ultrasound (IUS) and other related imaging technologies are popularized in CD diagnosis and treatment benefit. Transmural healing has been initially used in clinical practice and the correlation between its rules and long-term clinical remission has been explored. 展开更多
关键词 Transmural healing Inflammatory Bowel Disease Crohn’s Disease
下载PDF
Single-cell sequencing technology in diabetic wound healing:New insights into the progenitors-based repair strategies
8
作者 Zhen Xiang Rui-Peng Cai +1 位作者 Yang Xiao Yong-Can Huang 《World Journal of Stem Cells》 SCIE 2024年第5期462-466,共5页
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ... Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM. 展开更多
关键词 Single-cell sequencing Diabetic wound healing Cell subpopulations Heterogeneity PATHOGENESIS Progenitor cells
下载PDF
Impact of tibial transverse transport in tissue regeneration and wound healing with perspective on diabetic foot ulcers
9
作者 Sulagna Mukherjee Seung-Soon Im 《World Journal of Diabetes》 SCIE 2024年第5期810-813,共4页
In this editorial,we comment on an article by Liao et al published in the current issue of the World Journal of Diabetes.We focus on the clinical significance of tibial transverse transport(TTT)as an effective treatme... In this editorial,we comment on an article by Liao et al published in the current issue of the World Journal of Diabetes.We focus on the clinical significance of tibial transverse transport(TTT)as an effective treatment for patients with diabetic foot ulcers(DFU).TTT has been associated with tissue regeneration,improved blood circulation,reduced amputation rates,and increased expression of early angiogenic factors.Mechanistically,TTT can influence macrophage polarization and growth factor upregulation.Despite this potential,the limitations and conflicting results of existing studies justify the need for further research into its optimal application and development.These clinical implications highlight the efficacy of TTT in recalcitrant DFU and provide lasting stimuli for tissue re-generation,and blood vessel and bone marrow improvement.Immunomodu-lation via systemic responses contributes to its therapeutic potential.Future studies should investigate the underlying molecular mechanisms to enhance our understanding and the efficacy of TTT.This manuscript emphasizes the potential of TTT in limb preservation and diabetic wound healing and suggests avenues for preventive measures against limb amputation in diabetes and peripheral artery disease.Here,we highlight the clinical significance of the TTT and its importance in healing DFU to promote the use of this technique in tissue regeneration. 展开更多
关键词 Diabetes foot ulcer Tibial transverse transport Foot surgery Wound healing Tissue regeneration
下载PDF
Biological scaffold as potential platforms for stem cells:Current development and applications in wound healing
10
作者 Jie-Yu Xiang Lin Kang +7 位作者 Zi-Ming Li Song-Lu Tseng Li-Quan Wang Tian-Hao Li Zhu-Jun Li Jiu-Zuo Huang Nan-Ze Yu Xiao Long 《World Journal of Stem Cells》 SCIE 2024年第4期334-352,共19页
Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address ... Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity. 展开更多
关键词 Stem-cell-based therapy Biological scaffolds Wound healing Extracellular matrix mimicry Cellular activities enhancement Scaffold characteristics
下载PDF
Value of negative pressure sealing drainage on wound healing of Gustilo IIIB and IIIC open fractures
11
作者 Bo Fang Yong-Sheng Wang +2 位作者 Wei Li Kai Ying Gang Zong 《World Journal of Clinical Cases》 SCIE 2024年第20期4199-4205,共7页
BACKGROUND Gustilo III fractures have a high incidence and are difficult to treat.Patients often experience difficulty in wound healing.Negative pressure drainage technology can help shorten wound healing time and has... BACKGROUND Gustilo III fractures have a high incidence and are difficult to treat.Patients often experience difficulty in wound healing.Negative pressure drainage technology can help shorten wound healing time and has positive value in improving patient prognosis.AIM To explore the clinical value of the negative pressure sealing drainage technique in wound healing of Gustilo IIIB and IIIC open fractures.METHODS Eighty patients with Gustilo IIIB and IIIC open fractures with skin and soft tissue injuries who were treated in the Second People’s Hospital of Dalian from March 2019 to December 2021 were selected as the research subjects.They were divided into a study group(n=40,healed with negative pressure closed drainage)and a control group(n=40,healed with conventional dressing changes)according to the variation in the healing they received.The efficacy of the clinical interventions,the variations in the regression indicators(time to wound healing,time to fracture healing,time to hospitalization),and the conversion and healing of bacterial wounds were compared 1-3 mo after the intervention.RESULTS The total effective rate of patients among the study group was 95.00%(38/40),which was notably higher than 75.00%(30/40)among the control group(P<0.05).The wound healing time,fracture healing time,and hospital stay of the patients in the study group was shorter than the control group(P<0.05).After the intervention,the negative bacterial culture at the wound site rate and wound healing rate of the patients among the study group increased compared to the control group(P<0.05).CONCLUSION Negative pressure sealing and drainage technology has a good therapeutic effect on patients with Gustilo IIIB and IIIC open fracture wounds with skin and soft tissue injury.It can notably enhance the wound healing rate and the negative rate of bacteria on the wound surface and help to speed up the recovery process of patients. 展开更多
关键词 Negative pressure closed drainage Gustilo type III open fracture Wound healing Clinical outcome Research value
下载PDF
ON101 Cream Increases the Wound Healing Rate in Diabetic Patients with Uremia—Cases Report
12
作者 Yu-Hsiu Yen Chi-Ming Pu 《Case Reports in Clinical Medicine》 2024年第5期178-186,共9页
Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputat... Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputation rate is 6.5 - 10 times higher compared to the non-nephropathic diabetic population. Thus, a suitable therapeutic agent was needed. ON101 is a topical cream that promotes diabetic wound healing through a unique macrophage-regulating ability. In this case series, we included 5 diabetes patients (mean age 54.6 ± 8.7 years, 4 mal) with ESRD (mean eGFR 7.4 ± 3.35 mL/min/1.73m<sup>2</sup>) and had experienced dialysis for at least 4.5 years. These patients also have UT (University of Texas) grade 2A DFUs that have existed for at least 1.5 months (mean ulcer duration 8.3 ± 8.97 months). These subjects were applied ON101 twice daily for up to 20 weeks, and wound size was recorded during treatment. Among these subjects, three ulcers (patient No. 1, 2, and 3) completely healed within 10 weeks upon ON101 application, and one ulcer was 99% reduced at 20<sup>th</sup> weeks (patient No. 4). Only one ulcer didn’t show an obvious response that may due to poor compliance in wound care and glucose control. In summary, the overall healing rate was 60%, suggesting ON101 performed equivalence healing efficacy in dialysis patients compared with those who did not have dialysis. 展开更多
关键词 Diabetic Foot Ulcer (DFU) UREMIA DIALYSIS Wound healing
下载PDF
X-Paste improves wound healing in diabetes via NF-E2-related factor/HO-1 signaling pathway
13
作者 Ming-Wei Du Xin-Lin Zhu +8 位作者 Dong-Xing Zhang Xian-Zhen Chen Li-Hua Yang Jin-Zhou Xiao Wen-Jie Fang Xiao-Chun Xue Wei-Hua Pan Wan-Qing Liao Tao Yang 《World Journal of Diabetes》 SCIE 2024年第6期1299-1316,共18页
BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence a... BACKGROUND Diabetic foot ulcers(DFU),as severe complications of diabetes mellitus(DM),significantly compromise patient health and carry risks of amputation and mortality.AIM To offer new insights into the occurrence and development of DFU,focusing on the therapeutic mechanisms of X-Paste(XP)of wound healing in diabetic mice.METHODS Employing traditional Chinese medicine ointment preparation methods,XP combines various medicinal ingredients.High-performance liquid chromatography(HPLC)identified XP’s main components.Using streptozotocin(STZ)-induced diabetic,we aimed to investigate whether XP participated in the process of diabetic wound healing.RNA-sequencing analyzed gene expression differences between XP-treated and control groups.Molecular docking clarified XP’s treatment mechanisms for diabetic wound healing.Human umbilical vein endothelial cells(HUVECs)were used to investigate the effects of Andrographolide(Andro)on cell viability,reactive oxygen species generation,apoptosis,proliferation,and metastasis in vitro following exposure to high glucose(HG),while NF-E2-related factor-2(Nrf2)knockdown elucidated Andro’s molecular mechanisms.RESULTS XP notably enhanced wound healing in mice,expediting the healing process.RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment.HPLC identified 21 primary XP components,with Andro exhibiting strong Nrf2 binding.Andro mitigated HG-induced HUVECs proliferation,metastasis,angiogenic injury,and inflammation inhibition.Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation,with Nrf2 knockdown reducing Andro’s proliferative and endothelial protective effects.CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models.As XP’s key component,Andro activates the Nrf2/HO-1 signaling pathway,enhancing cell proliferation,tubule formation,and inflammation reduction. 展开更多
关键词 Words:Diabetes mellitus Wound healing NF-E2-related factor-2/HO-1 signaling pathway ANDROGRAPHOLIDE
下载PDF
Understanding wound healing in obesity
14
作者 Asha Cotterell Michelle Griffin +3 位作者 Mauricio A Downer Jennifer B Parker Derrick Wan Michael T Longaker 《World Journal of Experimental Medicine》 2024年第1期22-32,共11页
Obesity has become more prevalent in the global population.It is associated with the development of several diseases including diabetes mellitus,coronary heart disease,and metabolic syndrome.There are a multitude of f... Obesity has become more prevalent in the global population.It is associated with the development of several diseases including diabetes mellitus,coronary heart disease,and metabolic syndrome.There are a multitude of factors impacted by obesity that may contribute to poor wound healing outcomes.With millions worldwide classified as obese,it is imperative to understand wound healing in these patients.Despite advances in the understanding of wound healing in both healthy and diabetic populations,much is unknown about wound healing in obese patients.This review examines the impact of obesity on wound healing and several animal models that may be used to broaden our understanding in this area.As a growing portion of the population identifies as obese,understanding the underlying mechanisms and how to overcome poor wound healing is of the utmost importance. 展开更多
关键词 OBESITY Wound healing ADIPOKINES Tissue fibrosis Diabetes Preclinical animal models Hypertrophic skin scarring Wound tension Metabolic syndrome
下载PDF
Janus hydrogel/electrospun-membrane dressing enhancing wound healing in rats
15
作者 Zi-Rui Zhu Jia-Na Huang +3 位作者 Jin-Ze Li Hao Cao Zhao-Yi Lin Yan Li 《Biomedical Engineering Communications》 2024年第2期17-25,共9页
Background:Excessive exudate secreted from chronic wounds often leads to overhydration and infection.Although a variety of dressings are currently available in clinical applications,they frequently fail to provide mul... Background:Excessive exudate secreted from chronic wounds often leads to overhydration and infection.Although a variety of dressings are currently available in clinical applications,they frequently fail to provide multifunction to promote chronic wound healing.The dressings with a Janus structure,featuring distinct properties on each side,are potential to improve wound healing.Methods:Composite dressings with a Janus structure were fabricated,comprising freeze-dried polycaprolactone(PCL)electrospun membrane and alginate-based hydrogel.The PCL fibrous membrane provided air permeability,while the hydrogel loaded with Deferoxamine,composed of alginate and poly(N-isopropylacrylamide)(PNIPAM),exhibited hygroscopic properties.The inclusion of PNIPAM imparted thermo-responsivity.Results:The hydrogel(thickness of 2.778±0.082 mm)exhibited a robust adhesion to the fiber membrane(thickness of 0.261±0.041 mm).For ANDC(Alginate-PNIPAM hydrogel with Deferoxamine/PCL membrane)samples,the water vapor transmission rate(WVTR)was measured to be 3364.80±23.23 g∙m−2∙day−1 and the swelling ratio at 2 h was determined to be 1179±125%.The thermo-responsivity of ANDC samples manifested in an increased swelling rate,escalating from 797±189%at 37°C to 1132±147%at 4°C.The elastic modulus was assessed for lyophilized and rehydrated ANDC sample.When theωof the rheometer rotor was decreased from 10 rad/s to 0.1 rad/s,the lyophilized dressing exhibited a decrease from 2.65±0.01 MPa to 1.80±0.90 MPa,while the rehydrated dressing demonstrated an increase from 133.65±55.68 Pa to 264.23±141.71 Pa.The pro-healing properties of the dressings were evaluated using full-thickness skin defect model on SD rats,and a circular wound of diameter 10 mm healed completely by day 12.Conclusion:The dressings not only protected the wound and absorbed excess exudate,but also demonstrated nondestructive peelability upon cooling,providing a novel approach for accelerating wound healing and management. 展开更多
关键词 Janus structure composite dressing wound healing
下载PDF
Antibacterial and angiogenic dual-functional fibrous membrane dressing for infected wound healing
16
作者 Chao Zhou Che Zhao +7 位作者 Hao-Yu Dai Tian-Jun Zhu Jia-Pei Yao Li Chen Jing-Jing Wen Jia Ling Celestine Loh Xin-Die Zhou Yong Huang 《Biomedical Engineering Communications》 2024年第1期4-14,共11页
Background:Skin,being a vital organ that regulates physiological responses in the human body,is prone to injury from external environmental factors.Healing full-thickness skin defects becomes especially challenging wh... Background:Skin,being a vital organ that regulates physiological responses in the human body,is prone to injury from external environmental factors.Healing full-thickness skin defects becomes especially challenging when infections and vascular injuries are involved.Traditional wound dressings with single functions,such as antibacterial or angiogenic properties,fall short in achieving rapid wound healing.To address this,there is a need to develop wound dressing materials that possess both effective antibacterial and angiogenic properties.Methods:In this study,we utilized electrospinning technology to fabricate hyaluronic acid-cellulose acetate fibrous membrane dressings,incorporating poly(ionic liquid)as an antibacterial polymer and deferoxamine as an angiogenic agent.Results:The resulting fibrous membrane dressing contained poly(ionic liquid)and deferoxamin showcased a microporous structure,drug-releasing capabilities,and excellent air permeability.It not only demonstrated highly effective antibacterial properties but also exhibited remarkable angiogenesis,thereby promoting the healing of full-thickness skin defect wounds in both in vitro and in vivo assays.Conclusion:These findings highlight the immense potential of this wound dressing material for future clinical applications. 展开更多
关键词 electro spinning antibacterial polymer angiogenesis wound healing membrane dressing
下载PDF
Clinical Study on the Effectiveness of Xian Fang Huo Ming Yin for Treating Cutaneous Infections and Promoting Wound Healing in Patients with Perianal Abscess
17
作者 Xinjian Lu 《Journal of Clinical and Nursing Research》 2024年第3期187-193,共7页
Objective:To explore the effect of the Xian Fang Huo Ming Yin(XFHM)for treating cutaneous infections and promoting wound healing in patients with perianal abscesses.Methods:Sixty-one patients with perianal abscesses w... Objective:To explore the effect of the Xian Fang Huo Ming Yin(XFHM)for treating cutaneous infections and promoting wound healing in patients with perianal abscesses.Methods:Sixty-one patients with perianal abscesses who were admitted to our hospital(Xinghua City People’s Hospital)from May 2022 to May 2023 were selected and randomly divided into two groups,a control group(30 cases)and a study group(31 cases).Both groups received surgical treatment.The control group received conventional treatment and warm water fumigation,sitz bath,and surgical dressing change after surgery,while the research group received XFHM based on the control group.XFHM was taken orally and replaced with warm water for fumigation and sitz bathing.Both groups received treatment for 4 weeks but discontinued sitz bathing after 2 weeks.Various clinical indicators between the two groups were compared.Results:The total clinical effective rate and wound recovery rate of the study group were higher than that of the control group.There were differences in the wound pain scores,surrounding tissue edema,and wound secretions at different time points.Both groups experienced wound pain.The scores of wound pain,surrounding tissue edema,and wound secretions of the study group were lower than those of the control group,7 and 14 days after surgery.The serum interleukin 6(IL-6),tumor necrosis factor-alpha(TNF-α)levels,and pH values of the study group were lower than those of the control group 10 days after surgery(P<0.05).Conclusion:The application of XFHM for treating cutaneous infections and promoting wound healing in patients with perianal abscesses improved the treatment outcome,alleviated clinical symptoms,and promoted healing. 展开更多
关键词 Perianal abscess Xian fang huo ming yin for treating cutaneous infections INTERLEUKIN Tumor necrosis factor Wound healing
下载PDF
Combination of graphene oxide and platelet-rich plasma improves tendon-bone healing in a rabbit model of supraspinatus tendon reconstruction 被引量:4
18
作者 Dingsu Bao Jiacheng Sun +7 位作者 Min Gong Jie Shi Bo Qin Kai Deng Gang Liu Shengqiang Zeng Zhou Xiang Shijie Fu 《Regenerative Biomaterials》 SCIE EI 2021年第6期15-25,共11页
The treatment of rotator cuff tear is one of the major challenges for orthopedic surgeons.The key to treatment is the reconstruction of the tendon-bone interface(TBI).Autologous platelet-rich plasma(PRP)is used as a t... The treatment of rotator cuff tear is one of the major challenges for orthopedic surgeons.The key to treatment is the reconstruction of the tendon-bone interface(TBI).Autologous platelet-rich plasma(PRP)is used as a therapeutic agent to accelerate the healing of tendons,as it contains a variety of growth factors and is easy to prepare.Graphene oxide(GO)is known to improve the physical properties of biomaterials and promote tissue repair.In this study,PRP gels containing various concentrations of GO were prepared to promote TBI healing and supraspinatus tendon reconstruction in a rabbit model.The incorporation of GO improved the ultrastructure and mechanical properties of the PRP gels.The gels containing 0.5 mg/ml GO(0.5 GO/PRP)continuously released transforming growth factor-b1(TGF-b1)and platelet-derived growth factor(PDGF)-AB,and the released TGF-b1 and PDGF-AB were still at high concentrations,1063.451 pg/ml and814.217 pg/ml,respectively,on the 14th day.In vitro assays showed that the 0.5 GO/PRP gels had good biocompatibility and promoted bone marrow mesenchymal stem cells proliferation and osteogenic and chondrogenic differentiation.After 12 weeks of implantation,the magnetic resonance imaging,microcomputed tomography and histological results indicated that the newly regenerated tendons in the 0.5 GO/PRP group had a similar structure to natural tendons.Moreover,the biomechanical results showed that the newly formed tendons in the 0.5 GO/PRP group had better biomechanical properties compared to those in the other groups,and had more stable TBI tissue.Therefore,the combination of PRP and GO has the potential to be a powerful advancement in the treatment of rotator cuff injuries. 展开更多
关键词 platelet-rich plasma graphene oxide controlled release rotator cuff tear tendon-bone interface healing
原文传递
Metformin accelerates bone fracture healing by promoting type H vessel formation through inhibition of YAP1/TAZ expression 被引量:2
19
作者 Zhe Ruan Hao Yin +26 位作者 Teng-Fei Wan Zhi-Rou Lin Shu-Shan Zhao Hai-Tao Long Cheng Long Zhao-Hui Li Yu-Qi Liu Hao Luo Liang Cheng Can Chen Min Zeng Zhang-Yuan Lin Rui-Bo Zhao Chun-Yuan Chen Zhen-Xing Wang Zheng-Zhao Liu Jia Cao Yi-Yi Wang Ling Jin Yi-Wei Liu Guo-Qiang Zhu Jing-Tao Zou Jiang-Shan Gong Yi Luo Yin Hu Yong Zhu Hui Xie 《Bone Research》 SCIE CAS CSCD 2023年第3期625-637,共13页
Due to increasing morbidity worldwide,fractures are becoming an emerging public health concern.This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures.Type H ... Due to increasing morbidity worldwide,fractures are becoming an emerging public health concern.This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures.Type H vessels have recently been identified as a bone-specific vascular subtype that supports osteogenesis.Here,we show that metformin accelerated fracture healing in both osteoporotic and normal mice.Moreover,metformin promoted angiogenesis in vitro under hypoxia as well as type H vessel formation throughout fracture healing.Mechanistically,metformin increased the expression of HIF-1α,an important positive regulator of type H vessel formation,by inhibiting the expression of YAP1/TAZ in calluses and hypoxia-cultured human microvascular endothelial cells(HMECs).The results of HIF-1αor YAP1/TAZ interference in hypoxia-cultured HMECs using si RNA further suggested that the enhancement of HIF-1αand its target genes by metformin is primarily through YAP1/TAZ inhibition.Finally,overexpression of YAP1/TAZ partially counteracted the effect of metformin in promoting type H vessel-induced angiogenesis-osteogenesis coupling during fracture repair.In summary,our findings suggest that metformin has the potential to be a therapeutic agent for fractures by promoting type H vessel formation through YAP1/TAZ inhibition. 展开更多
关键词 YAP1 healing FRACTURE
下载PDF
Mucosal healing and inflammatory bowel disease:Therapeutic implications and new targets 被引量:2
20
作者 Megan Lynn Otte Raju Lama Tamang +3 位作者 Julia Papapanagiotou Rizwan Ahmad Punita Dhawan Amar B Singh 《World Journal of Gastroenterology》 SCIE CAS 2023年第7期1157-1172,共16页
Mucosal healing(MH)is vital in maintaining homeostasis within the gut and protecting against injury and infections.Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain int... Mucosal healing(MH)is vital in maintaining homeostasis within the gut and protecting against injury and infections.Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain intestinal homeostasis and mucosal regeneration/repair.However,when intestinal homeostasis becomes chronically disturbed and an inflammatory immune response is constitutively active due to impairment of the intestinal epithelial barrier autoimmune disease results,particularly inflammatory bowel disease(IBD).Many proteins and signaling pathways become dysregulated or impaired during these pathological conditions,with the mechanisms of regulation just beginning to be understood.Consequently,there remains a relative lack of broadly effective therapeutics that can restore MH due to the complexity of both the disease and healing processes,so tissue damage in the gastrointestinal tract of patients,even those in clinical remission,persists.With increased understanding of the molecular mechanisms of IBD and MH,tissue damage from autoimmune disease may in the future be ameliorated by developing therapeutics that enhance the body’s own healing response.In this review,we introduce the concept of mucosal healing and its relevance in IBD as well as discuss the mechanisms of IBD and potential strategies for altering these processes and inducing MH. 展开更多
关键词 INFLAMMATION Injury/repair Mucosal healing Mucosal barrier THERAPEUTICS COLITIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部