期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rapid Optimization of Tension Distribution for Cable-Driven Parallel Manipulators with Redundant Cables 被引量:8
1
作者 OUYANG Bo SHANG Weiwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期231-238,共8页
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The n... The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method. 展开更多
关键词 cable-driven parallel manipulator tension distribution redundant cable linear programming
下载PDF
A numerical method to predict the membrane tension distribution of spreading cells based on the reconstruction of focal adhesions
2
作者 XinYue Liu Keni-chi Tsubota +2 位作者 Yi Yu Wang Xi XiaoBo Gong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第6期88-100,共13页
Changes in membrane tension significantly affect the physiological functions of cells in various ways.However,directly measuring the spatial distribution of membrane tension remains an ongoing issue.In this study,an a... Changes in membrane tension significantly affect the physiological functions of cells in various ways.However,directly measuring the spatial distribution of membrane tension remains an ongoing issue.In this study,an algorithm is proposed to determine the membrane tension inversely by executing a particle-based method and searching for the minimum deformation energy based on the cell images and focal adhesions.A standard spreading cell model is established using 3D reconstructions with images from structured illumination microscopy as the reference cell shape.The membrane tension distribution,forces across focal adhesions,and profile of the spread cell are obtained using this method,until the cell deformation energy function optimization converges.Qualitative and quantitative comparisons with previous experimental results validated the reliability of this method.The results show that in the standard spreading cell model,the membrane tension decreases from the bottom to the top of the membrane.This method can be applied to predict the membrane tension distribution of cells freely spreading into different shapes,which could improve the quantitative analysis of cellular membrane tension in various studies for cell mechanics. 展开更多
关键词 cell spread membrane tension distribution particle-based method optimization method 3D reconstructions
原文传递
Expressions of the radius and the surface tension of surface of tension in terms of the pressure distribution for nanoscale liquid threads
3
作者 闫红 魏久安 +1 位作者 崔树稳 朱如曾 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期383-385,共3页
The expressions of the radius and the surface tension of surface of tension Rs and γs in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulatio... The expressions of the radius and the surface tension of surface of tension Rs and γs in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulations of the interfacial phenomena of nanoscale fluids; these two basic expressions are derived in this paper. Although these expressions were derived first in the literature[Kim B G, Lee J S, Han M H, and Park S, 2006 Nanoscale and Microscale Thermophysical Engineering, 10, 283] and used widely thereafter, the derivation is wrong both in logical structure and physical thought. In view of the importance of these basic expressions, the logic and physical mistakes appearing in that derivation are pointed out. 展开更多
关键词 nanoscale liquid thread surface tension surface of tension pressure distribution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部