To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of t...To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.展开更多
This study aimed to explore the role of mechanical tension in hypertrophic scars and the change in nerve density using hematoxylin-eosin staining and S100 immunohistochemistry, and to observe the expression of nerve g...This study aimed to explore the role of mechanical tension in hypertrophic scars and the change in nerve density using hematoxylin-eosin staining and S100 immunohistochemistry, and to observe the expression of nerve growth factor by western blot analysis. The results demonstrated that mechanical tension contributed to the formation of a hyperplastic scar in the back skin of rats, in conjunction with increases in both nerve density and nerve growth factor expression in the scar tissue. These experimental findings indicate that the cutaneous nervous system plays a role in hypertrophic scar formation caused by mechanical tension.展开更多
Surface tensions of slag addition Mg O and Si O2 based on conventional 70%CaF 2-30%Al2O3 and 60%Ca F2-20%Ca O-20%Al2O3(mass fraction) at 1300 °C, 1400 °C and 1500 °C were investigated. Influence mechani...Surface tensions of slag addition Mg O and Si O2 based on conventional 70%CaF 2-30%Al2O3 and 60%Ca F2-20%Ca O-20%Al2O3(mass fraction) at 1300 °C, 1400 °C and 1500 °C were investigated. Influence mechanism of Mg O and Si O2 on slag surface tension was also analyzed. Results indicate that surface tension decreases with the increase of Mg O content in the case of the Mg O content(mass fraction) less than 8%, however, when Mg O content(mass fraction) is from 8% to 30%, surface tension increases with the increase of Mg O content. When Si O2 content(mass fraction) is from 2% to 8%, surface tension decreases with the increase of Si O2 content. Additionally, the relationship between surface tension and optical basicity is a monotonically increasing linear function. Research findings can provide important reference for slag design and the study of slag-metal interfacial tension.展开更多
The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compa...The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compared. The results show that the effect of the former is better than that of the latter. Applying an external tension load of 200 MPa after welding, the maximum residual stress drops down from 235 MPa to about 90 MPa, moreover, it decreases to 30MPa when an external tension load of 200 MPa is applied during welding.展开更多
Background Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP)-I is a membrane-bound protein that catalyzes the hydrolysis of extracellular nucleoside triphosphates to monophosphate and extracellular inorganic p...Background Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP)-I is a membrane-bound protein that catalyzes the hydrolysis of extracellular nucleoside triphosphates to monophosphate and extracellular inorganic pyrophosphate (ePPi). Mechanical stimulation regulates ENPP-1 expression. This study sought to investigate the changes in ENPP-1 expression after stimulation using cyclic mechanical tension (CMT).展开更多
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.E2021203129).
文摘To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.
基金supported by the Shandong Excellent Young Scientist Research Award Fund of the Natural Science Foundation of Shandong Province, No. BS2009YY043Shandong Medical and Health Science and Technology Development Program for Youth Fund, No. 2009QZ023the National Natural Science Foundation of China, No. 81272099
文摘This study aimed to explore the role of mechanical tension in hypertrophic scars and the change in nerve density using hematoxylin-eosin staining and S100 immunohistochemistry, and to observe the expression of nerve growth factor by western blot analysis. The results demonstrated that mechanical tension contributed to the formation of a hyperplastic scar in the back skin of rats, in conjunction with increases in both nerve density and nerve growth factor expression in the scar tissue. These experimental findings indicate that the cutaneous nervous system plays a role in hypertrophic scar formation caused by mechanical tension.
基金Project(51274266)supported by the National Natural Science Foundation of ChinaProject(N120502002)supported by the Fundamental Research Funds for Central Universities of ChinaProject(LR2013009)supported by the Program for Liaoning Excellent Talents in University,China
文摘Surface tensions of slag addition Mg O and Si O2 based on conventional 70%CaF 2-30%Al2O3 and 60%Ca F2-20%Ca O-20%Al2O3(mass fraction) at 1300 °C, 1400 °C and 1500 °C were investigated. Influence mechanism of Mg O and Si O2 on slag surface tension was also analyzed. Results indicate that surface tension decreases with the increase of Mg O content in the case of the Mg O content(mass fraction) less than 8%, however, when Mg O content(mass fraction) is from 8% to 30%, surface tension increases with the increase of Mg O content. When Si O2 content(mass fraction) is from 2% to 8%, surface tension decreases with the increase of Si O2 content. Additionally, the relationship between surface tension and optical basicity is a monotonically increasing linear function. Research findings can provide important reference for slag design and the study of slag-metal interfacial tension.
文摘The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compared. The results show that the effect of the former is better than that of the latter. Applying an external tension load of 200 MPa after welding, the maximum residual stress drops down from 235 MPa to about 90 MPa, moreover, it decreases to 30MPa when an external tension load of 200 MPa is applied during welding.
文摘Background Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP)-I is a membrane-bound protein that catalyzes the hydrolysis of extracellular nucleoside triphosphates to monophosphate and extracellular inorganic pyrophosphate (ePPi). Mechanical stimulation regulates ENPP-1 expression. This study sought to investigate the changes in ENPP-1 expression after stimulation using cyclic mechanical tension (CMT).