期刊文献+
共找到348篇文章
< 1 2 18 >
每页显示 20 50 100
Generalized Lanczos method for systematic optimization of tensor network states
1
作者 Rui-Zhen Huang Hai-Jun Liao +5 位作者 Zhi-Yuan Liu Hai-Dong Xie Zhi-Yuan Xie Hui-Hai Zhao Jing Chen Tao Xiang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期220-226,共7页
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition com... We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems. 展开更多
关键词 tensor network state generalized Lanczos method renormalization group
下载PDF
On the emergence of gravitational dynamics from tensor networks
2
作者 Hua-Yu Dai Jia-Rui Sun Yuan Sun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第8期134-138,共5页
Tensor networks are used to describe the ground state wavefunction of the quantum many-body system.Recently,it has been shown that a tensor network can generate the anti-de Sitter(AdS)geometry by using the entanglemen... Tensor networks are used to describe the ground state wavefunction of the quantum many-body system.Recently,it has been shown that a tensor network can generate the anti-de Sitter(AdS)geometry by using the entanglement renormalization approach,which provides a new way to realize bulk reconstruction in the AdS/conformal field theory correspondence.However,whether the dynamical connections can be found between the tensor network and gravity is an important unsolved problem.In this paper,we give a novel proposal to integrate ideas from tensor networks,entanglement entropy,canonical quantization of quantum gravity and the holographic principle and argue that the gravitational dynamics can be generated from a tensor network if the wave function of the latter satisfies the Wheeler–DeWitt equation. 展开更多
关键词 AdS/CFT correspondence tensor network emergent gravity
原文传递
Quantum bit threads of MERA tensor network in large c limit
3
作者 Chong-Bin Chen Fu-Wen Shu Meng-He Wu 《Chinese Physics C》 SCIE CAS CSCD 2020年第7期184-198,共15页
The Ryu-Takayanagi(RT)formula plays a large role in the current theory of gauge-gravity duality and emergent geometry phenomena.The recent reinterpretation of this formula in terms of a set of"bit threads"is... The Ryu-Takayanagi(RT)formula plays a large role in the current theory of gauge-gravity duality and emergent geometry phenomena.The recent reinterpretation of this formula in terms of a set of"bit threads"is an interesting effort in understanding holography.In this study,we investigate a quantum generalization of the"bit threads"based on a tensor network,with particular focus on the multi-scale entanglement renormalization ansatz(MERA).We demonstrate that,in the large c limit,isometries of the MERA can be regarded as"sources"(or"sinks")of the information flow,which extensively modifies the original picture of bit threads by introducing a new variableρ:density of the isometries.In this modified picture of information flow,the isometries can be viewed as generators of the flow.The strong subadditivity and related properties of the entanglement entropy are also obtained in this new picture.The large c limit implies that classical gravity can emerge from the information flow. 展开更多
关键词 gauge-gravity duality holographic entanglement entropy tensor network
原文传递
Networked Evolutionary Model of Snow-Drift Game Based on Semi-Tensor Product 被引量:1
4
作者 Lv Chen 《Journal of Applied Mathematics and Physics》 2019年第3期726-737,共12页
This paper investigates the networked evolutionary model based on snow-drift game with the strategy of rewards and penalty. Firstly, by using the semi-tensor product of matrices approach, the mathematical model of the... This paper investigates the networked evolutionary model based on snow-drift game with the strategy of rewards and penalty. Firstly, by using the semi-tensor product of matrices approach, the mathematical model of the networked evolutionary game is built. Secondly, combined with the matrix expression of logic, the mathematical model is expressed as a dynamic logical system and next converted into its evolutionary dynamic algebraic form. Thirdly, the dynamic evolution process is analyzed and the final level of cooperation is discussed. Finally, the effects of the changes in the rewarding and penalty factors on the level of cooperation in the model are studied separately, and the conclusions are verified by examples. 展开更多
关键词 Snow-Drift GAME Semi-tensor Product networkED EVOLUTIONARY Games Rewarding and PENALTY Strategy
下载PDF
Criterion of Quantum Entanglement and the Covariance Correlation Tensor in the Theory of Quantum Network
5
作者 QIANShang-Wu GUZhi-Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第1期15-20,共6页
This article discusses the covariance correlation tensor (CCT) in quantum network theory for four Bell bases in detail. Furthermore, it gives the expression of the density operator in terms of CCT for a quantum networ... This article discusses the covariance correlation tensor (CCT) in quantum network theory for four Bell bases in detail. Furthermore, it gives the expression of the density operator in terms of CCT for a quantum network of three nodes, thus gives the criterion of entanglement for this case, i.e. the conditions of complete separability and partial separability for a given quantum state of three bodies. Finally it discusses the general case for the quantum network of nodes. 展开更多
关键词 covariance correlation tensor in quantum network theory criterion of entanglement Bell bases GHZ states
下载PDF
基于TensorFlow的交通标志识别方法研究 被引量:5
6
作者 王全 梁敬文 《价值工程》 2019年第27期204-206,共3页
交通标志识别系统是智能驾驶系统的重要组成部分;本文分析了现有方法存在的问题,基于TensorFlow框架搭建了改进的卷积神经网络,用于识别交通标志;整个系统在TensorFlow上实现,使用行车记录仪采集的视频验证了本文的算法,结果表明本文算... 交通标志识别系统是智能驾驶系统的重要组成部分;本文分析了现有方法存在的问题,基于TensorFlow框架搭建了改进的卷积神经网络,用于识别交通标志;整个系统在TensorFlow上实现,使用行车记录仪采集的视频验证了本文的算法,结果表明本文算法有一定的实用性,而且在准确率,鲁棒性和实时性等方面也表现较好。 展开更多
关键词 交通标志识别 卷积神经网络 tensor FLOW
下载PDF
TENSOR NEURAL NETWORK AND ITS NUMERICAL INTEGRATION
7
作者 Yifan Wang Hehu Xie Pengzhan Jin 《Journal of Computational Mathematics》 SCIE 2024年第6期1714-1742,共29页
In this paper,we introduce a type of tensor neural network.For the first time,we propose its numerical integration scheme and prove the computational complexity to be the polynomial scale of the dimension.Based on the... In this paper,we introduce a type of tensor neural network.For the first time,we propose its numerical integration scheme and prove the computational complexity to be the polynomial scale of the dimension.Based on the tensor product structure,we develop an efficient numerical integration method by using fixed quadrature points for the functions of the tensor neural network.The corresponding machine learning method is also introduced for solving high-dimensional problems.Some numerical examples are also provided to validate the theoretical results and the numerical algorithm. 展开更多
关键词 tensor neural network Numerical integration Fixed quadrature points Machine learning High-dimensional eigenvalue problem
原文传递
Separability of Pure States and Mixed States of the Quantum Network of Two Nodes
8
作者 GUZhi-Yu QIANShang-Wu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期421-424,共4页
This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum net... This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and . 展开更多
关键词 covariance correlation tensor in quantum network theory criterion of no entanglement pure state mixed state
下载PDF
Nodes and layers PageRank centrality for multilayer networks 被引量:4
9
作者 Lai-Shui Lv Kun Zhang +1 位作者 Ting Zhang Meng-Yue Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期129-136,共8页
In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by de... In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by developing a novel iterative algorithm for computing a set of tensor equations. Under some conditions, the existence and uniqueness of this centrality were proven by applying the Brouwer fixed point theorem. Furthermore, the convergence of the proposed iterative algorithm was established. Finally, numerical experiments on a simple multilayer network and two real-world multilayer networks(i.e., Pierre Auger Collaboration and European Air Transportation Networks) are proposed to illustrate the effectiveness of the proposed algorithm and to compare it to other existing centrality measures. 展开更多
关键词 MULTILAYER networks PAGERANK CENTRALITY random WALKS transition probability tensorS
下载PDF
A Matrix Approach to the Modeling and Analysis of Networked Evolutionary Games With Time Delays 被引量:10
10
作者 Guodong Zhao Yuzhen Wang Haitao Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期818-826,共9页
Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic ex... Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic expression is formulated for the networked evolutionary games with finite memories, based on which the behavior of the corresponding evolutionary game is analyzed. Secondly, under a proper assumption, the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium. Finally, an illustrative example is worked out to support the obtained new results. 展开更多
关键词 Fictitious play process Nash equilibrium networked evolutionary games(NEGs) semi-tensor product of matrices
下载PDF
Context-Aware System Modeling Based on Boolean Control Network
11
作者 M. Humayun Kabir M. Robiul Hoque 《Open Journal of Applied Sciences》 2015年第11期661-668,共8页
Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model... Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model of a context-aware system used in smart home based on Boolean control networks. This modeling describes the relationship between the context elements (person, time, location, and activity) and services (Morning Call, Sleeping, Guarding, Entertainment, and normal), which is effective to logical inference. We apply semi tensor matrix product to describe the dynamic of the system. This matrix form of expression is a convenient and reasonable way to design logic control system. 展开更多
关键词 MATHEMATICAL Modeling CONTEXT-AWARE System Smart HOME BOOLEAN Control network Semi-tensor Matrix Product
下载PDF
基于TT-Tucker分解的无预训练LC卷积神经网络压缩方法
12
作者 刘微容 张志强 +3 位作者 张宁 孟家豪 张敏 刘婕 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期29-38,共10页
张量训练(TT)分解和Tucker分解是两种有效的卷积神经网络压缩方法。然而,TT和Tucker分解分别面临空间结构信息丢失与计算复杂度高等问题。为解决上述问题,文中考虑了网络结构的信息保留率和资源占用情况,采用学习-压缩(LC)算法的约束型... 张量训练(TT)分解和Tucker分解是两种有效的卷积神经网络压缩方法。然而,TT和Tucker分解分别面临空间结构信息丢失与计算复杂度高等问题。为解决上述问题,文中考虑了网络结构的信息保留率和资源占用情况,采用学习-压缩(LC)算法的约束型压缩框架,提出了一种基于TT-Tucker分解的无预训练LC卷积神经网络压缩方法(TTLC)。TT-LC方法包括学习步骤和压缩步骤两个部分。学习步骤不需要预训练过程,采用了指数循环学习率方法以提高训练准确率。而在压缩步骤,文中根据TT和Tucker分解的优点以及贝叶斯规则选取全局最优秩的特性,运用经验变分贝叶斯矩阵分解(EVBMF)和贝叶斯优化(BayesOpt)选出合理的秩以指导张量分解,采用TT-LC方法压缩训练后的模型。TT-LC方法既降低了空间结构信息丢失率和计算复杂度,又解决了张量的秩选取不合理导致模型准确率显著下降的问题,可实现模型的双重贝叶斯选秩和双重压缩,获得最优的压缩模型。最后,采用ResNets和VGG网络在CIFAR10与CIFAR100数据集上进行实验。结果表明:对于ResNet32网络,相比于基准方法,文中方法在准确率为92.22%的情况下,获得了69.6%的参数量压缩率和66.7%的浮点计算量压缩率。 展开更多
关键词 卷积神经网络 网络压缩 张量分解 贝叶斯优化 约束型压缩
下载PDF
融合特征编码和短语交互感知的隐式篇章关系识别
13
作者 王秀利 金方焱 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1377-1388,共12页
隐式篇章关系识别难度大、普遍性高.从论元编码和论元交互角度入手,提出了一种融合特征编码和短语交互感知的隐式篇章关系识别模型.该模型兼顾了论元本身特征和论元间交互特征的作用,并分别进行了优化.论元编码部分整合了双向长短时记... 隐式篇章关系识别难度大、普遍性高.从论元编码和论元交互角度入手,提出了一种融合特征编码和短语交互感知的隐式篇章关系识别模型.该模型兼顾了论元本身特征和论元间交互特征的作用,并分别进行了优化.论元编码部分整合了双向长短时记忆网络和循环注意力卷积神经网络,能够更全面地捕获论元全局和局部特征;论元交互部分从短语层级考虑论元间的语义关系建模,构建了短语级交互注意力机制,并利用神经张量网络深入挖掘其中的关系模式,更能体现出论元间潜在的更深层次的关联关系.在宾州篇章树库数据集上的实验结果表明,该模型F1值均优于其他模型. 展开更多
关键词 隐式篇章关系识别 双向长短时记忆网络 循环注意力卷积神经网络 短语级交互注意力 神经张量网络
下载PDF
Anisotropic WM conductivity reconstruction based on diffusion tensor magnetic resonance imaging: a simulation study
14
作者 Dandan Yan Wenlong Xu Jing Li 《Journal of Biomedical Science and Engineering》 2010年第8期776-784,共9页
The present study aims to estimate the in vivo anisotropic conductivities of the White Matter (WM) tissues by means of Magnetic Resonance Electrical Impedance Tomography (MREIT) technique. The realistic anisotropic vo... The present study aims to estimate the in vivo anisotropic conductivities of the White Matter (WM) tissues by means of Magnetic Resonance Electrical Impedance Tomography (MREIT) technique. The realistic anisotropic volume conductor model with different conductivity properties (scalp, skull, CSF, gray matter and WM) is constructed based on the Diffusion Tensor Magnetic Resonance Imaging (DT- MRI) from a healthy human subject. The Radius Basic Function (RBF)-MREIT algorithm of using only one magnetic flux density component was applied to evaluate the eigenvalues of the anisotropic WM with target values set according to the DT-MRI data based on the Wolter’s model, which is more physiologically reliable. The numerical simulations study performed on the five-layer realistic human head model showed that the conductivity reconstruction method had higher accuracy and better robustness against noise. The pilot research was used to judge the feasibility, meaningfulness and reliability of the MREIT applied on the electrical impedance tomography of the complicated human head tissues including anisotropic characteristics. 展开更多
关键词 MAGNETIC RESONANCE Electrical Impedance Tomography Radius Basic Function Neural network Diffusion tensor MAGNETIC RESONANCE Imaging ANISOTROPIC CONDUCTIVITY WM
下载PDF
基于双通道生成对抗网络的城市用电负荷缺失数据补全方法
15
作者 刘志坚 陶韵旭 +2 位作者 刘航 罗灵琳 李明 《电力系统自动化》 EI CSCD 北大核心 2024年第17期161-170,共10页
用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,... 用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,根据负荷的周期性变化特征和时空关联性构建三阶负荷张量,并将影响负荷变化的多种外部因素构建为三阶辅助信息张量。然后,为满足两种张量的双输入需求,在生成对抗网络的输入层引入双通道机制,通过卷积与反卷积运算提取张量的特征;为提升网络对张量数据的训练效果和补全精度,将张量分解损失引入原始损失函数,并采用改进的混沌映射粒子群优化算法联合优化超参数和网络。最后,在真实负荷数据集上开展数据补全实验。结果表明,所提方法能够对随机缺失率不超过50%、连续缺失不超过3天的负荷数据进行准确补全。 展开更多
关键词 负荷数据缺失 负荷预测 三阶张量 生成对抗网络 分解损失 混沌映射粒子群优化算法 补全方法
下载PDF
联合张量补全与循环神经网络的时间序列插补法
16
作者 何军 赖赵远 时勘 《数据采集与处理》 CSCD 北大核心 2024年第3期598-608,共11页
现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,... 现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,本文提出了联合张量补全与循环神经网络的时间序列插补法。首先,将多元时间序列建模成张量,通过张量的低秩补全捕获不同时间序列之间的关系。其次,提出了一个基于时间的动态权重,将张量插补结果和循环神经网络的预测结果进行融合,避免因为连续缺失导致的预测误差累积。最后,在多个真实的时间序列数据集上对所提方法进行了实验评估,结果显示该模型优于已有相关模型,且基于插补后的时间序列可以提升时间序列预测效果。 展开更多
关键词 张量补全 时间序列插补 循环神经网络
下载PDF
Motor imagery training induces changes in brain neural networks in stroke patients 被引量:15
17
作者 Fang Li Tong Zhang +3 位作者 Bing-Jie Li Wei Zhang Jun Zhao Lu-Ping Song 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1771-1781,共11页
Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown... Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238). 展开更多
关键词 nerve regeneration STROKE hand function motor imagery brain neural network motion evoked potential dorsal pathway ventral pathway diffusion tensor imaging neural regeneration
下载PDF
基于U⁃Rnet的重力全张量梯度数据反演 被引量:1
18
作者 祁锐 李厚朴 +1 位作者 胡佳心 罗莎 《石油地球物理勘探》 EI CSCD 北大核心 2024年第2期331-342,共12页
重力反演是通过地表信息获取地下地质体空间结构与物理性质的重要手段之一。每个重力梯度分量反映不同的地质体信息,联合重力梯度分量进行重力反演能够更好地研究地下密度异常体的形态和分布。为此,提出基于神经网络的重力全张量梯度数... 重力反演是通过地表信息获取地下地质体空间结构与物理性质的重要手段之一。每个重力梯度分量反映不同的地质体信息,联合重力梯度分量进行重力反演能够更好地研究地下密度异常体的形态和分布。为此,提出基于神经网络的重力全张量梯度数据反演算法,将U⁃Rnet网络应用于重力全张量数据的三维反演问题。为了检验该算法的有效性,采用六种典型模型进行模拟实验,获得了具有清晰边界和稀疏的反演结果。首先,对比L2和Tversky两种损失函数的反演结果,后者的反演结果能更清晰地反映模型的边界位置;然后,对不同梯度张量组合进行反演,四组实验结果在三个方向(x、y、z)上具有不同的反演精度,组合四的误差最低;最后,将该方法应用于美国德克萨斯州文顿盐丘的FTG数据,反演结果与实际地质信息基本吻合。 展开更多
关键词 梯度张量 U⁃Rnet网络 正演 重力反演 文顿盐丘
下载PDF
基于轻量级全连接张量映射网络的高光谱图像分类方法
19
作者 林知心 郑玉棒 +2 位作者 马天宇 王蕊 李恒超 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3541-3551,共11页
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全... 近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量. 展开更多
关键词 高光谱图像分类 模型压缩 全连接张量网络分解 卷积神经网络 张量神经网络 轻量卷积模块
下载PDF
知识图谱补全方法研究综述 被引量:1
20
作者 张文豪 徐贞顺 +3 位作者 刘纳 王振彪 唐增金 王正安 《计算机工程与应用》 CSCD 北大核心 2024年第12期61-73,共13页
知识图谱是用来描述世界中存在的各种实体和概念以及他们之间的关系的一种语义网络,近年来被广泛应用于智能问答、智能推荐和信息检索等领域。目前,大多数知识图谱都具有不完整性,因此,知识图谱补全成为一项重要的任务。根据模型构造方... 知识图谱是用来描述世界中存在的各种实体和概念以及他们之间的关系的一种语义网络,近年来被广泛应用于智能问答、智能推荐和信息检索等领域。目前,大多数知识图谱都具有不完整性,因此,知识图谱补全成为一项重要的任务。根据模型构造方法的不同,将知识图谱补全模型分为传统知识图谱补全模型、基于神经网络的知识图谱补全模型和基于元学习的知识图谱补全模型三类,对这三种知识图谱补全模型的分类情况进行介绍;总结知识图谱补全方法所使用的数据集和评价指标,并从各个模型优点和不足等方面对各类模型进行详细的对比分析。最后,对知识图谱补全进行归纳与总结,并展望未来的研究方向。 展开更多
关键词 知识图谱 翻译模型 张量分解 神经网络 元学习 知识图谱补全
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部