We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate t...We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.展开更多
文摘We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.