基于0.13μm Si Ge Bi CMOS工艺,设计了一个应用于0.34 THz高速通信系统的4路集成相控阵发射机芯片。该芯片集成了21.25 GHz的锁相环(PLL)频率源、4倍频器、4路威尔金森(Wilkinson)功分网络,每一路相控阵通道包括85 GHz功率放大器、模...基于0.13μm Si Ge Bi CMOS工艺,设计了一个应用于0.34 THz高速通信系统的4路集成相控阵发射机芯片。该芯片集成了21.25 GHz的锁相环(PLL)频率源、4倍频器、4路威尔金森(Wilkinson)功分网络,每一路相控阵通道包括85 GHz功率放大器、模拟移相器、20 Gbps二进制启闭键控(OOK)调制器、4倍频器以及2×2片载天线阵列。针对系统各个模块进行了测试和分析,并且对系统方向图进行了仿真。仿真结果表明,该相控阵系统能在E面实现±12°的角度扫描,3 d B波束宽度为11.9°,系统有效等向辐射功率(EIRP)为12 d Bm。该集成相控阵发射机芯片的面积为8 mm×4.3 mm。展开更多
本文回顾和梳理了当前片上雷达(Radar on Chip,RoC)的架构和射频前端、天线及信号处理等芯片化研究进展,以及基于异质异构集成、3D先进封装技术的雷达系统集成实现方案。在此基础上,从物理形态、实现工艺及技术发展等方面对片上雷达未...本文回顾和梳理了当前片上雷达(Radar on Chip,RoC)的架构和射频前端、天线及信号处理等芯片化研究进展,以及基于异质异构集成、3D先进封装技术的雷达系统集成实现方案。在此基础上,从物理形态、实现工艺及技术发展等方面对片上雷达未来发展趋势进行了分析,指出基于硅基半导体工艺,片上集成多路雷达收发前端、波形产生及信号处理等雷达功能单元,实现片上系统(System on Chip,SoC);或者通过异质异构及先进封装技术,将高度集成的雷达芯片集成在一个封装内,实现封装系统(System in Package,SiP),从而满足雷达系统微型化、轻重量、低成本和低功耗的发展需求。同时,基于芯片化可扩充多通道阵列模块也有望构建大型复杂阵列雷达系统。该方案为未来小型化武器装备提供有效的探测感知手段,也为蓬勃发展的民用雷达提供可行的技术路径。展开更多
文摘基于0.13μm Si Ge Bi CMOS工艺,设计了一个应用于0.34 THz高速通信系统的4路集成相控阵发射机芯片。该芯片集成了21.25 GHz的锁相环(PLL)频率源、4倍频器、4路威尔金森(Wilkinson)功分网络,每一路相控阵通道包括85 GHz功率放大器、模拟移相器、20 Gbps二进制启闭键控(OOK)调制器、4倍频器以及2×2片载天线阵列。针对系统各个模块进行了测试和分析,并且对系统方向图进行了仿真。仿真结果表明,该相控阵系统能在E面实现±12°的角度扫描,3 d B波束宽度为11.9°,系统有效等向辐射功率(EIRP)为12 d Bm。该集成相控阵发射机芯片的面积为8 mm×4.3 mm。
文摘本文回顾和梳理了当前片上雷达(Radar on Chip,RoC)的架构和射频前端、天线及信号处理等芯片化研究进展,以及基于异质异构集成、3D先进封装技术的雷达系统集成实现方案。在此基础上,从物理形态、实现工艺及技术发展等方面对片上雷达未来发展趋势进行了分析,指出基于硅基半导体工艺,片上集成多路雷达收发前端、波形产生及信号处理等雷达功能单元,实现片上系统(System on Chip,SoC);或者通过异质异构及先进封装技术,将高度集成的雷达芯片集成在一个封装内,实现封装系统(System in Package,SiP),从而满足雷达系统微型化、轻重量、低成本和低功耗的发展需求。同时,基于芯片化可扩充多通道阵列模块也有望构建大型复杂阵列雷达系统。该方案为未来小型化武器装备提供有效的探测感知手段,也为蓬勃发展的民用雷达提供可行的技术路径。