This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm th...This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.展开更多
A 2-μm composite Tm:YAG laser pumped with a narrow-band laser diode was presented. The temperature distribution and thermal lens in the Tm:YAG were numerically simulated by a finite element method and the results w...A 2-μm composite Tm:YAG laser pumped with a narrow-band laser diode was presented. The temperature distribution and thermal lens in the Tm:YAG were numerically simulated by a finite element method and the results were used to design the special cavity, in order to achieve a high efficiency and stable output. With a 25-W incident pump power, we obtained a maximum output power of 11 W at 2018.5 nm, corresponding to a slope efficiency of 51.3% and an optical-to-optical efficiency of 44.5%, respectively. The beam quality was measured to be M_x^2= 1.8 and M_y^2= 1.6.展开更多
A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be ...A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal.展开更多
Room-temperature Tm:Ho:GdVO4 microchip laser operated around 2μm is demonstrated for the first time to our knowledge.At a heat sink temperature of 283K,maximum output power of 29.7m W is obtained by using a 0.25-mm-l...Room-temperature Tm:Ho:GdVO4 microchip laser operated around 2μm is demonstrated for the first time to our knowledge.At a heat sink temperature of 283K,maximum output power of 29.7m W is obtained by using a 0.25-mm-long crystal at an absorbed pump power of 912mW,corresponding to a slope efficiency of 5.0%.At the temperature to 283K,a single-longitudinal-mode laser as much as 8mW at 2048.5 nm is achieved.The M^(2)factor is measured to be 1.4.展开更多
It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of th...It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.展开更多
We present a 3 5 μ m optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μ m laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are an...We present a 3 5 μ m optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μ m laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antireflection coated at 2.1 and 3.7 4.6 μ m, is cut as θ =53.5°, φ =0°. When the pump power of 2.1-μ m polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type I phase match. Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μ m, respectively. Pulse duration is about 27 ns. Beam quality factor M 2 is better than 1.8. The tunability of 3 5 μ m can be achieved by changing the angle of the ZGP crystal.展开更多
Terahertz(THz)NH_(3) lasing with optical pumping by electron-beam-sustained discharge“long”(~100μs)CO_(2) laser pulses was obtained.The NH3laser emission pulses and the“long”pulses of the CO_(2) pump laser were s...Terahertz(THz)NH_(3) lasing with optical pumping by electron-beam-sustained discharge“long”(~100μs)CO_(2) laser pulses was obtained.The NH3laser emission pulses and the“long”pulses of the CO_(2) pump laser were simultaneously measured with nanosecond response time.The NH3 lasing duration and its delay with respect to the pump pulse were measured for various CO_(2) laser pulse energies.For the CO_(2) laser pump line 9R(30),three wavelengths of 67.2,83.8,and 88.9μm were recorded.For the CO_(2) laser pump line 9R(16),only a single NH3 laser line with a wavelength of 90.4μm was detected.展开更多
Terahertz (THz) emission from laser-induced air-plasma is presented. The frequency spectra of THz wave are investigated using an air-biased-coherent-detection method. The frequency spectra are measured under differe...Terahertz (THz) emission from laser-induced air-plasma is presented. The frequency spectra of THz wave are investigated using an air-biased-coherent-detection method. The frequency spectra are measured under different pump-pulse and probe-pulse energies. The frequency pump power and we speculate it caused by collision behavior spectra become narrow with the increasing Meanwhile, the bandwidth of the frequency spectra is broadened by the increasing probe power, which can be explained by pulse compression. Based on this finding, the optimal frequency spectrum of THz can be achieved by regulating the probe and pump beam.展开更多
A set of fiber-coupled continuous wave (CW) diode lasers has been used to pump Tm, Ho:GdVO_4 and generate 2.048-μm laser radiation at liquid nitrogen temperature. The optical-optical efficiencies of 25%, output power...A set of fiber-coupled continuous wave (CW) diode lasers has been used to pump Tm, Ho:GdVO_4 and generate 2.048-μm laser radiation at liquid nitrogen temperature. The optical-optical efficiencies of 25%, output power of 3.5 W, and pumping threshold of 838 mW have been obtained and compared with those from Tm, Ho:YLF under identical experimental conditions.展开更多
基金Project supported by the Creative Foundation of Wuhan National Laboratory for Optoelectronics (Grant No. Z080007)partly by the National Basic Research Program of China (973 Program)(Grant No. 61328)
文摘This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.
基金Project supported by the Science and Technology Major Project of Fujian Province,China(Grant No.2013HZ0003-2)
文摘A 2-μm composite Tm:YAG laser pumped with a narrow-band laser diode was presented. The temperature distribution and thermal lens in the Tm:YAG were numerically simulated by a finite element method and the results were used to design the special cavity, in order to achieve a high efficiency and stable output. With a 25-W incident pump power, we obtained a maximum output power of 11 W at 2018.5 nm, corresponding to a slope efficiency of 51.3% and an optical-to-optical efficiency of 44.5%, respectively. The beam quality was measured to be M_x^2= 1.8 and M_y^2= 1.6.
基金supported by the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Municipal Primary application and Frontier Technology Research Plan,China (Grant No 07JCYBJC06200)
文摘A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal.
文摘Room-temperature Tm:Ho:GdVO4 microchip laser operated around 2μm is demonstrated for the first time to our knowledge.At a heat sink temperature of 283K,maximum output power of 29.7m W is obtained by using a 0.25-mm-long crystal at an absorbed pump power of 912mW,corresponding to a slope efficiency of 5.0%.At the temperature to 283K,a single-longitudinal-mode laser as much as 8mW at 2048.5 nm is achieved.The M^(2)factor is measured to be 1.4.
文摘It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.
文摘We present a 3 5 μ m optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μ m laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antireflection coated at 2.1 and 3.7 4.6 μ m, is cut as θ =53.5°, φ =0°. When the pump power of 2.1-μ m polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type I phase match. Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μ m, respectively. Pulse duration is about 27 ns. Beam quality factor M 2 is better than 1.8. The tunability of 3 5 μ m can be achieved by changing the angle of the ZGP crystal.
文摘Terahertz(THz)NH_(3) lasing with optical pumping by electron-beam-sustained discharge“long”(~100μs)CO_(2) laser pulses was obtained.The NH3laser emission pulses and the“long”pulses of the CO_(2) pump laser were simultaneously measured with nanosecond response time.The NH3 lasing duration and its delay with respect to the pump pulse were measured for various CO_(2) laser pulse energies.For the CO_(2) laser pump line 9R(30),three wavelengths of 67.2,83.8,and 88.9μm were recorded.For the CO_(2) laser pump line 9R(16),only a single NH3 laser line with a wavelength of 90.4μm was detected.
基金the National Natural Science Foundation of China(Nos.11374007 and 61377109)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201237)the Support Program for Outstanding Ph.D.Advisors(No.YB20101000701)
文摘Terahertz (THz) emission from laser-induced air-plasma is presented. The frequency spectra of THz wave are investigated using an air-biased-coherent-detection method. The frequency spectra are measured under different pump-pulse and probe-pulse energies. The frequency pump power and we speculate it caused by collision behavior spectra become narrow with the increasing Meanwhile, the bandwidth of the frequency spectra is broadened by the increasing probe power, which can be explained by pulse compression. Based on this finding, the optimal frequency spectrum of THz can be achieved by regulating the probe and pump beam.
基金This work was supported by the Scientific Research Foundation of Harbin Institute of Technology
文摘A set of fiber-coupled continuous wave (CW) diode lasers has been used to pump Tm, Ho:GdVO_4 and generate 2.048-μm laser radiation at liquid nitrogen temperature. The optical-optical efficiencies of 25%, output power of 3.5 W, and pumping threshold of 838 mW have been obtained and compared with those from Tm, Ho:YLF under identical experimental conditions.