This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection ...Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent ye...Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.展开更多
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
文摘Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
基金Supported by Downhole Intelligent Measurement and Control Science and Technology Innovation Team of Southwest Petroleum University(Grant No.2018CXTD04)National Natural Science Foundation of China(Grant Nos.61701085,51974273)+1 种基金Chengdu Municipal international science and technology cooperation project of China(Grant Nos.2020-GH02-00016-HZ)2020 National Mountain Highway Engineering Technology Research Center Open Fund Project(Grant No.GSGZJ-2020-01).
文摘Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.