期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Feature Selection Method by Applying Parallel Collaborative Evolutionary Genetic Algorithm 被引量:1
1
作者 Hao-Dong Zhu Hong-Chan Li +1 位作者 Xiang-Hui Zhao Yong Zhong 《Journal of Electronic Science and Technology》 CAS 2010年第2期108-113,共6页
Feature selection is one of the important topics in text classification. However, most of existing feature selection methods are serial and inefficient to be applied to massive text data sets. In this case, a feature ... Feature selection is one of the important topics in text classification. However, most of existing feature selection methods are serial and inefficient to be applied to massive text data sets. In this case, a feature selection method based on parallel collaborative evolutionary genetic algorithm is presented. The presented method uses genetic algorithm to select feature subsets and takes advantage of parallel collaborative evolution to enhance time efficiency, so it can quickly acquire the feature subsets which are more representative. The experimental results show that, for accuracy ratio and recall ratio, the presented method is better than information gain, x2 statistics, and mutual information methods; the consumed time of the presented method with only one CPU is inferior to that of these three methods, but the presented method is supe rior after using the parallel strategy. 展开更多
关键词 Index terms-feature selection genetic algorithm parallel collaborative evolutionary text mining.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部