Scavenging abilities of the ethylenediamine, diethylenetriamine and tris(2-aminoethyl)amine functionalized resins derived from the low cross-linked glycidyl methacrylate-styrene gels in relation to the selected transi...Scavenging abilities of the ethylenediamine, diethylenetriamine and tris(2-aminoethyl)amine functionalized resins derived from the low cross-linked glycidyl methacrylate-styrene gels in relation to the selected transition metal ions and organic (acid chlorides) electrophiles were explored. The synergetic effects of the solvents were found for the metal ion uptake. In this case a pair of solvents capable simultaneously to swell the hydrophobic core of the resins and interact with the polar amine groups turned out to be a more effective medium for activation of the nucleophilic functionalities of the resins. The resin with ethylenediamine moieties proved to be effective in scavenging acyl chlorides from methylene chloride as well. However, it did not provide complete removing sulphonyl chlorides from the solutions. These organic electrophiles were removed effectively by the resins bearing tris(2-aminoethyl)amine functionalities.展开更多
The theory of chemical shift effect of substituent was applied to the assignment of the 13 C NMR spectra of the ethylene/propylene and ethylene/octene 1 copolymers. Using the parameters derived above a...The theory of chemical shift effect of substituent was applied to the assignment of the 13 C NMR spectra of the ethylene/propylene and ethylene/octene 1 copolymers. Using the parameters derived above and the DEPT technique, we then entirely assigned the 13 C NMR spectra of the ethylene/propylene/octene 1 terpolymers synthesized in the presence of the same heterogeneous supported Ziegler Natta catalyst, TiCl 4/MgCl 2/ i Bu 3Al. The present paper also covers the terpolymer composition and the monomer sequence distributions of a series of ethylene/propylene/octene 1 terpolymers.展开更多
A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene)(PEO_(113)-b-PVBC_(130)-b-Pt BS_(x)or E_(113)V_(130)T_(x))triblock terpolymers with various lengths x(=20,33,66,104,215...A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene)(PEO_(113)-b-PVBC_(130)-b-Pt BS_(x)or E_(113)V_(130)T_(x))triblock terpolymers with various lengths x(=20,33,66,104,215)of Pt BS block were synthesized via a two-step reversible addition-fragmentation chain transfer(RAFT)polymerization.The E_(113)V_(130)T_(x)triblock terpolymers were non-crystalline because the PVBC and Pt BS blocks strongly hindered the crystallization of PEO block.The effects of Pt BS block length x on the phase structures of E_(113)V_(130)T_(x)triblock terpolymers were investigated by combined techniques of small-angle X-ray scattering(SAXS)and transmission electron microscopy(TEM).It was found that with increasing x from20 to 215,the phase structure of E_(113)V_(130)T_(x)triblock terpolymers became more ordered and changed from disordered structure,hexagonally-packed cylinder(HEX),hexagonally perforated layer(HPL),to lamellar(LAM)phase structures.Temperature-variable SAXS measurements showed that the HEX,HPL and LAM phase structures obtained for E_(113)V_(130)T_(66),E_(113)V_(130)T_(104)and E_(113)V_(130)T_(215)by thermal annealing,respectively,were thermodynamically stable in the temperature range of 30-170℃.展开更多
A series of copolymers, based on benzo[1,2-b:4,5-b']dithiophene (BDT) as the electron donor and 2,1,3- benzothiadiazole (BT)/diketopyrrolo[3,4-c]pyrrole (DPP) as the electron acceptors, were synthesized for hi...A series of copolymers, based on benzo[1,2-b:4,5-b']dithiophene (BDT) as the electron donor and 2,1,3- benzothiadiazole (BT)/diketopyrrolo[3,4-c]pyrrole (DPP) as the electron acceptors, were synthesized for highly efficient polymer solar cells. By changing the BT/DPP ratio in the conjugated backbone, the absorption, energy levels, molecular aggregation and carrier mobility could be finely tuned. With increased DPP content, the absorption range was extended to the longer wavelength region with narrower bandgaps. The highest occupied molecular orbital (HOMO) levels were also raised up and the molecular aggregation was enhanced. The balance of these factors would afford a remarkable device performance enhancement. Polymer P3 with BT:DPP = 0.7:0.3 (molar ratio) exhibited the highest power conversion efficiency (PCE) of 9.01%, with open circuit voltage (Voc) = 0.73 V, short current density (Jsc) = 18.45 mA.cm-2, and fill factor (FF) - 66.9%. The PCE value was improved by 48.7% compared to P1 and by 117.6% compared to P7, respectively, indicating a great potential in photovoltaic application.展开更多
A series of random terpolymers P2-P5 were designed and synthesized by randomly embedding 5 mol%, 10 mol%, 15 mol% and 25 mol% feed ratios of low cost 2,2-bithiophene as the third monomer to the famous donor-acceptor ...A series of random terpolymers P2-P5 were designed and synthesized by randomly embedding 5 mol%, 10 mol%, 15 mol% and 25 mol% feed ratios of low cost 2,2-bithiophene as the third monomer to the famous donor-acceptor (D-A) type copolymer PTBT-Th (P1). All polymers showed similar molecular weight with number-average molecular weight (Mn) and weight-average molecular weight (Mw) in the range of (59-74) and (93-114) kg·mol-1, respectively, to ensure a fair comparison on the structure-property relationships. Compared with the control copolymer PTBT-Th, the random terpolymers exhibited enhanced absorption intensity in a wide range from 400 nm to 650 nm in both solution and film as well as in polymer/PC71BM blends. From grazing incident wide-angle X-ray diffraction (GIWAXS), compared with the regularly alternated copolymer PTB7-Th, the random terpolymers demonstrated mild structural disorder with reduced (100) lamellar stacking and slightly weakened (010) π-π stacking for the polymers as well as slightly reduced PC71BM aggregation in polymer/PC71BM blends. However, the measured hole mobility for terpolymers ((1.20-3.73) × 10 -4 cm2·V-1·s-1) was evaluated to be comparable or even higher than 1.35 × 10 -4 cm2·V-1 ·s-1 of the alternative copolymer. Enhanced average power conversion efficiency (PCE) from 7.35% to 8.11% and 7.79% to 8.37% was observed in both conventional and inverted device architectures from copolymer P1 to terpolymers P4, while further increasing the 2,2-bithiophene feed ratio decreased the PCE.展开更多
Three novel regular acceptor-donorl-acceptor-donor2(A-D1-A-D2) terpolymers were prepared via em-bedding a second donor(D2) unit into the traditional D-A backbone to manipulate the energy levels and moleculargeomet...Three novel regular acceptor-donorl-acceptor-donor2(A-D1-A-D2) terpolymers were prepared via em-bedding a second donor(D2) unit into the traditional D-A backbone to manipulate the energy levels and moleculargeometry with no complex synthesis or solubility loss. In these A-D1-A-D2 terpolymers, benzodithiophene(BDT, D1)and diketopyrrolopyrrole(DPP, A) were selected as the basic skeleton, and the dithienopyrrole(DTPy), carbazole(CZ)and fluorine(FL) units with different electron donating ability were chosen as the second donor trait(D2). The HOMOenergy levels can be effectively modulated by only varying D2 unit because of the push-pull interaction between do-nor and acceptor units. Versus the D-A bipolymer PDPP-BDT, incorporation of the D2 unit into the copolymers candistinctly lower the highest occupied molecular orbital(HOMO) levels to -5.47 eV for PDDPP-BDT-DTPy, -5.38 eVfor PDDPP-BDT-CZ and -5.23 eV for PDDPP-BDT-FL, which shows the strong dependence on electron-donatingability. Density functional theory(DFT) simulation and X-ray diffraction(XRD) measurements also reveal the effectof the D2 units on the molecular geometry of the terpolymers and their molecular packing. Notably, aPDDPP-BDT-DTPy combined with a thiophene ring and forked tail pendant away from the backbone had less back-bone torsion and more compact packing than the other two counterparts. These results demonstrate that embedding asecond donor(D2) unit into the backbone to construct an A-D1-A-D2 structure can be an effective and direct strategyto manipulate the energy levels and molecular geometry and develop organic semiconducting materials.展开更多
This contribution reports an efficient approach for preparing polycarbonate block terpolymers by immortal stepwise copolymerization of CO2 with different epoxides in the presence of enol chain transfer,mediated by rob...This contribution reports an efficient approach for preparing polycarbonate block terpolymers by immortal stepwise copolymerization of CO2 with different epoxides in the presence of enol chain transfer,mediated by robust cobalt catalyst systems consisting of the fluorine substituted salen Co(Ⅲ)NO3 or biphenol-linker bimetallic Co(Ⅲ)complex in conjunction with an ionic cocatalyst,PPNX(PPN=bis(triphenylphosphine)iminium,X=NO3–or 2,4-dinitrophenoxide).Various polycarbonate block terpolymers were obtained in perfectly unimodal distribution of their molecular weights with narrow polydispersity.They all possessed only one broad glass transition temperature,which could be adjusted by altering the length of different polycarbonate segments.展开更多
For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups,...For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.展开更多
Six phenolic monomers (M1 - M6) have been synthesized, namely, potassium-3-(ortho,para)-hydroxy benzoyl dithiofor- mate (M1 and M2), (ortho,para)-(4-amino-5-mercapto-1,2,4 triazol-3-yl)-phenol (M3 and M4), (ortho,para...Six phenolic monomers (M1 - M6) have been synthesized, namely, potassium-3-(ortho,para)-hydroxy benzoyl dithiofor- mate (M1 and M2), (ortho,para)-(4-amino-5-mercapto-1,2,4 triazol-3-yl)-phenol (M3 and M4), (ortho,para)-hydroxy benzoic acid thiosemicarbazide (M5 and M6) and twelve novel chelating terpolymers (P1 - P12) were synthesized by ter- polymerization condensation reaction of these monomers with phenol or bis phenol-A and excess of formalin in basic medium. The monomers (M1 - M6) and their co-polymers (P1 - P12) were characterized by FT.IR, H1-NMR, elemental analysis and thermal analysis (TGA) and according to data obtained the structures of these compounds were proposed. Analytical evaluation of chelating selectivity of these polymers toward (Co2+, Cr3+, Cu2+, Cd2+, Pb2+) were achieved by batch equilibrium method, the results show that all synthetic resins have high efficiency toward (Cr3+) and less effi- ciency toward (Co2+, Cu2+, Cd2+ and Pb2+).展开更多
The formation of polyacids in a glass-ionomer cement was computationally modeled. The polyacid modelled is an oligomer made up of three molecules: acrylic acid, itaconic acid and an additional molecule that acts as a ...The formation of polyacids in a glass-ionomer cement was computationally modeled. The polyacid modelled is an oligomer made up of three molecules: acrylic acid, itaconic acid and an additional molecule that acts as a spacer group between the previous two. Acryloyl and meta-acryloyl derivatives of some amino acids and related molecules such as N-vinyl pyrrolidone and N-vinyl caprolactam were used as spacer groups. Some of these molecules have been previously used experimentally as spacer groups. In this work the spacer behaviour of 15 different molecules was investigated. To our knowledge, this is the first computational attempt to model some promising molecules to be incorporated into glass-ionomer dental cements. The results revealed the best structural arrangement for the investigated molecules.展开更多
Photoinitiated crosslinking of ethylene-propylene-diene terpolymer (EPDM) blends filled with calcium carbonate, talc and calcined kaolin (CK) in the presence of benzil dimethyl ketal as photoinitiator and trimethy...Photoinitiated crosslinking of ethylene-propylene-diene terpolymer (EPDM) blends filled with calcium carbonate, talc and calcined kaolin (CK) in the presence of benzil dimethyl ketal as photoinitiator and trimethylolpropane triacrylate as crosslinker and their related properties have been studied by different analytical methods, The results from gel content and heat extension determination show that the efficiency ofphotocrosslinking of EPDM increases with increasing the content of diene and its molecular weight. The EPDM blends with 100 phr different inorganic fillers can be photocrosslinked to gel content of above 60% by 5 s UV-irradiation under optimum conditions. Under the same conditions of irradiation, the orders of photocrosslinking rate and final gel content are EPDM/CaCO3 〉 EPDM/talc 〉 EPDM/CK. The data from thermogravimetric analysis, dynamic mechanical thermal analysis, electrical properties, mechanical tests and scanning electron microscopy show that UV irradiation crosslinking apparently enhances the thermal stability, mechanical properties and electrical properties of the photocrosslinked EPDM/inorganic filler samples. Although the attenuated total-reflection FTIR data show that inorganic fillers can promote the surface photo-oxidation of EPDM/inorganic filler samples with increasing the irradiation time, the above related properties of the photocrosslinked EPDM blends irradiated within 5 s are enough to satisfy many applications in the cable industry.展开更多
4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofura...4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofuran (THF), and then they were identified by IR spectroscopy. The maximum oil-absorptivity of gel-PBED produced from the optinum reaction conditions was 8 420% but its swelling rate was very low. The highest oil-absorptivity of photocrosslinked sol-PBED film was 5 800%. Although its oil absorbency was not as high as gel-PBED' s, swelling rate was higher than that of gelPBED and was suitable for commercial purpose. After swelling in oil, neither gel PBED nor photocrosslinked sol-PBED film having high oil-absorptivity had sufficient mechanical strength to be taken out of oil wholly. As is known, composite technique is one of the useful methods for reinforcing them. Fibers, sponges and non-woven cloths were used as reinforcers or supporters in this work. Oil-absorptivities and swelling kinetics were evaluated by method ASTM (F726 - 81 ) and an experimental equation. The mechanical properties and the morphologies of some composites were measured by tensile tester and SEM , respectively.展开更多
Compared to regular conjugated polymers,the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene(NF)-based polymer solar cells(PSCs)due to their disordered chemical struct...Compared to regular conjugated polymers,the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene(NF)-based polymer solar cells(PSCs)due to their disordered chemical structures.In this work,we report two random terpolymer donors(PBNB80 and PBNB50)by tuning the molar ratio of electron-accepting units of 1,3-di(thiophen-2-yl)naphtho[2,3-c]thiophene-4,9-dione(NTD)and 1,3-bis(4-chlorothiophen-2-yl)-4 H,8 H-benzo[1,2-c:4,5-c’]dithiophene-4,8-dione(ClBDD),at the same time,the parent polymers(PBNB100 and PBNB00)are also compared to study.These four polymer donors exhibit similar optical bandgaps and gradually deepen highest occupied molecular orbital levels.Importantly,aggregation and self-organization properties of the random terpolymer donors are optimized,which result in the better morphology and crystal coherence length after blending with NF acceptor of BO-4 Cl.Particularly,a PBNB80:BO-4 Cl blend forms an optimal nanoscale phase-separation morphology,thereby producing an outstanding power conversion efficiency of 16.0%,which is much higher than those(12.8%and 10.7%)of their parent binary polymer donor-based devices.This work demonstrates that rational using terpolymerization strategy to prepare random terpolymer is a very important method to achieve highly efficient NF-PSCs.展开更多
The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene(PP)/ethylene-propylene-diene terpolymer(EPDM) blends have been studied by means of mechanical tests,...The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene(PP)/ethylene-propylene-diene terpolymer(EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20 ℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends; (2) The β-type crystal structure of PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.展开更多
The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence...The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence was determined as alternating. The copolymerization rates at different feed ratios, temperatures and in different solvents were investigated, giving evidence to the very active involvement of the CT complexes in the copolymerization. Terpolymerization with acrylonitrile also showed that the complex mechanism was a proper one for this system.展开更多
The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to ...The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to its high propylene content, EPDM is compatible with i-PP to some degree. The interaction between the two components was strengthened. As expected, for partially compatible system the glass transition temperature of i-PP in the blends shifted to lower temperature. It was found that there existed two transitions, αEPDM and βEPDM, for the EPDM used in this work. The former was considered to be the glass transition of the random chain segments of EPDM, while the latter the local motion of the long ethylene sequences in EPDM. The unusual transition behaviour of αEPDM in the blends was explained in terms of the greater thermal expansion of EPDM and the compatibility of the two components. On the other hand, the βEPDM changed with the composition of the blends in a regular manner.展开更多
Copolycondensation mechanisms for the terpolyester system from m-methoxy-p-acetoxybenzoic acid,p-acetoxybenzoic acid and poly(ethylene terephthalate)are first investigatedby high resolution proton NMR spectroscopy at ...Copolycondensation mechanisms for the terpolyester system from m-methoxy-p-acetoxybenzoic acid,p-acetoxybenzoic acid and poly(ethylene terephthalate)are first investigatedby high resolution proton NMR spectroscopy at 400 MHz.A series of reactivity ratios of thecopolycondensation reactions are given.The results shown that the m-methoxy-p-acetoxybenzoicacid tends to homopolymerize,while the p-acetoxybenzoic acid,and the ethylene terephthalate unitespecially,tend to copolymerize with the m-methoxy-p-acetoxybenzoic acid.展开更多
A novel surface modifying agent and internal compatilizer of inorganic and macromolecule composite materials,P(St/MAH/BA)terpolymer,was synthesized in butanone by solution polymerization method using styrene(St),malei...A novel surface modifying agent and internal compatilizer of inorganic and macromolecule composite materials,P(St/MAH/BA)terpolymer,was synthesized in butanone by solution polymerization method using styrene(St),maleic anhydride(MAH),and butyl acrylate(BA)as monomers and azobisisobutyronitrile(AIBN)as an initiator.Some affecting factors on terpolymers yields such as polymerization time,reaction temperature,solvent volume,initiator content,and reactants ratios were studied.Furthermore,the structure and thermal properties of terpolymers were primarily characterized and determined by Fourier Transform Infrared Spectroscopy(FTIR),nuclear magnetic resonance(NMR),thermogravimetric analysis(TGA),and gel permeation chromatography(GPC).The results indicate that the terpolymers are random polymers and the yields are low,but the thermal decomposed temperature of terpolymers P(St/MAH/BA)is around 220 ℃ and the average molecular weights(Mw)achieve 1.189×105 g·mol-1.展开更多
Synthesis of terpolymers consisting of two electron-donating monomers, viz. styrene and vinyl acetate with one electron-accepting monomer, i.e. acrylonitrile, initiated by p-nitrobenzyl triphenyl phosphonim ylide in d...Synthesis of terpolymers consisting of two electron-donating monomers, viz. styrene and vinyl acetate with one electron-accepting monomer, i.e. acrylonitrile, initiated by p-nitrobenzyl triphenyl phosphonim ylide in dioxane as diluent at 65°C for 150 min has been studied. The kinetic expression is Rpα[I]0.8[Sty] 1.2[VA] 1.4 [AN]1.2. The terpolymer composition was determined by the Kelen-Tüdos method. The values of reactivity ratios using r1 (Sty + VA) = 0.1 and r2 (AN) = 0.005. The overall activation energy is 46 kJ●mol●L–1. The formation of terpolymer is confirmed by the FTIR spectra showing bands at 3030 cm–1, 1598 cm–1, and 2362 cm–1, confirming the presence of phenyl, acetoxy and nitrile group respectively. The terpolymer has been characterized by 1H-Nuclear Magnetic Resonance, 13C-Nuclear Magnetic Resonance. The Differential Scanning Calorimetric curve shows the Tg of the polymer as 149.5°C. A scanning electron microscope confirms the polymer to be phosphorus free. Electron.Spin.Resonance spectra confirms phenyl radical responsible for initiation.展开更多
Incorporation of siloxane-functionalized units into polymers backbone has proven to be an efficient strategy to improve photovoltaic performance. In this work, a low-cost siloxane-containing unit was developed to cons...Incorporation of siloxane-functionalized units into polymers backbone has proven to be an efficient strategy to improve photovoltaic performance. In this work, a low-cost siloxane-containing unit was developed to construct a series of terpolymers, and the effects of siloxane on the polymer performance were systematically studied. Different contents of thiophene containing siloxane-functionalized side chain were introduced into PM6 to obtain a series of polymers(PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30). The siloxane-functionalized side chains in polymers have only a slight effect on the absorption behavior and frontier molecular orbitals. However, when the siloxane content increased, the terpolymers' aggregation property decreased and the temperature-dependency increased, leading to improved donor-acceptor compatibility. The power conversion efficiency(PCE) based on PM6:Y6, PM6-SiO-20:Y6 and PM6-SiO-30:Y6 devices was 15.64%, 16.03% and 15.82%, respectively. In comparison, the active layer based on PM6-SiO-10:Y6 exhibits the most appropriate phase separation morphology, resulting in effective exciton dissociation, more balanced hole-electron transport and less recombination. Consequently, the highest PCE of 16.69% with an outstanding shortcircuit current density of 26.96 mA·cm^(-2) was obtained, which are one of the highest values for siloxane-functionalized polymer-based devices.This work demonstrates that finely controlling the content of siloxane-functionalized thiophene is beneficial for obtaining high-performance terpolymer donors and provides a novel and low-cost method to improve photovoltaic performance.展开更多
文摘Scavenging abilities of the ethylenediamine, diethylenetriamine and tris(2-aminoethyl)amine functionalized resins derived from the low cross-linked glycidyl methacrylate-styrene gels in relation to the selected transition metal ions and organic (acid chlorides) electrophiles were explored. The synergetic effects of the solvents were found for the metal ion uptake. In this case a pair of solvents capable simultaneously to swell the hydrophobic core of the resins and interact with the polar amine groups turned out to be a more effective medium for activation of the nucleophilic functionalities of the resins. The resin with ethylenediamine moieties proved to be effective in scavenging acyl chlorides from methylene chloride as well. However, it did not provide complete removing sulphonyl chlorides from the solutions. These organic electrophiles were removed effectively by the resins bearing tris(2-aminoethyl)amine functionalities.
基金Supported by the Foundation of Educational Ministry of China.
文摘The theory of chemical shift effect of substituent was applied to the assignment of the 13 C NMR spectra of the ethylene/propylene and ethylene/octene 1 copolymers. Using the parameters derived above and the DEPT technique, we then entirely assigned the 13 C NMR spectra of the ethylene/propylene/octene 1 terpolymers synthesized in the presence of the same heterogeneous supported Ziegler Natta catalyst, TiCl 4/MgCl 2/ i Bu 3Al. The present paper also covers the terpolymer composition and the monomer sequence distributions of a series of ethylene/propylene/octene 1 terpolymers.
基金the National Natural Science Foundation of China(Nos.21875214,21674097 and 21774111)for financial support。
文摘A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene)(PEO_(113)-b-PVBC_(130)-b-Pt BS_(x)or E_(113)V_(130)T_(x))triblock terpolymers with various lengths x(=20,33,66,104,215)of Pt BS block were synthesized via a two-step reversible addition-fragmentation chain transfer(RAFT)polymerization.The E_(113)V_(130)T_(x)triblock terpolymers were non-crystalline because the PVBC and Pt BS blocks strongly hindered the crystallization of PEO block.The effects of Pt BS block length x on the phase structures of E_(113)V_(130)T_(x)triblock terpolymers were investigated by combined techniques of small-angle X-ray scattering(SAXS)and transmission electron microscopy(TEM).It was found that with increasing x from20 to 215,the phase structure of E_(113)V_(130)T_(x)triblock terpolymers became more ordered and changed from disordered structure,hexagonally-packed cylinder(HEX),hexagonally perforated layer(HPL),to lamellar(LAM)phase structures.Temperature-variable SAXS measurements showed that the HEX,HPL and LAM phase structures obtained for E_(113)V_(130)T_(66),E_(113)V_(130)T_(104)and E_(113)V_(130)T_(215)by thermal annealing,respectively,were thermodynamically stable in the temperature range of 30-170℃.
基金financially supported by the National Natural Science Foundation of China(Nos.51573107 and 21432005)the Youth Science and Technology Foundation of Sichuan Province(No.2013JQ0032)+2 种基金the Foundation of State Key Laboratory of Polymer Materials Engineering(sklpme2014-3-05)the Synergistic Innovation Joint Foundation of CAEPSCU(No.XTCX2014008)the Fundamental Research Funds for the Central Universities(Nos.2012SCU04B01 and YJ2011025)
文摘A series of copolymers, based on benzo[1,2-b:4,5-b']dithiophene (BDT) as the electron donor and 2,1,3- benzothiadiazole (BT)/diketopyrrolo[3,4-c]pyrrole (DPP) as the electron acceptors, were synthesized for highly efficient polymer solar cells. By changing the BT/DPP ratio in the conjugated backbone, the absorption, energy levels, molecular aggregation and carrier mobility could be finely tuned. With increased DPP content, the absorption range was extended to the longer wavelength region with narrower bandgaps. The highest occupied molecular orbital (HOMO) levels were also raised up and the molecular aggregation was enhanced. The balance of these factors would afford a remarkable device performance enhancement. Polymer P3 with BT:DPP = 0.7:0.3 (molar ratio) exhibited the highest power conversion efficiency (PCE) of 9.01%, with open circuit voltage (Voc) = 0.73 V, short current density (Jsc) = 18.45 mA.cm-2, and fill factor (FF) - 66.9%. The PCE value was improved by 48.7% compared to P1 and by 117.6% compared to P7, respectively, indicating a great potential in photovoltaic application.
基金financially supported by the the National Natural Science Foundation of China(No.61761136013)the Natural Science Foundation of Jiangsu Province(Nos.BK20160042 and BK20160990)+1 种基金DFG(392306670)the CSC for financial support
文摘A series of random terpolymers P2-P5 were designed and synthesized by randomly embedding 5 mol%, 10 mol%, 15 mol% and 25 mol% feed ratios of low cost 2,2-bithiophene as the third monomer to the famous donor-acceptor (D-A) type copolymer PTBT-Th (P1). All polymers showed similar molecular weight with number-average molecular weight (Mn) and weight-average molecular weight (Mw) in the range of (59-74) and (93-114) kg·mol-1, respectively, to ensure a fair comparison on the structure-property relationships. Compared with the control copolymer PTBT-Th, the random terpolymers exhibited enhanced absorption intensity in a wide range from 400 nm to 650 nm in both solution and film as well as in polymer/PC71BM blends. From grazing incident wide-angle X-ray diffraction (GIWAXS), compared with the regularly alternated copolymer PTB7-Th, the random terpolymers demonstrated mild structural disorder with reduced (100) lamellar stacking and slightly weakened (010) π-π stacking for the polymers as well as slightly reduced PC71BM aggregation in polymer/PC71BM blends. However, the measured hole mobility for terpolymers ((1.20-3.73) × 10 -4 cm2·V-1·s-1) was evaluated to be comparable or even higher than 1.35 × 10 -4 cm2·V-1 ·s-1 of the alternative copolymer. Enhanced average power conversion efficiency (PCE) from 7.35% to 8.11% and 7.79% to 8.37% was observed in both conventional and inverted device architectures from copolymer P1 to terpolymers P4, while further increasing the 2,2-bithiophene feed ratio decreased the PCE.
文摘Three novel regular acceptor-donorl-acceptor-donor2(A-D1-A-D2) terpolymers were prepared via em-bedding a second donor(D2) unit into the traditional D-A backbone to manipulate the energy levels and moleculargeometry with no complex synthesis or solubility loss. In these A-D1-A-D2 terpolymers, benzodithiophene(BDT, D1)and diketopyrrolopyrrole(DPP, A) were selected as the basic skeleton, and the dithienopyrrole(DTPy), carbazole(CZ)and fluorine(FL) units with different electron donating ability were chosen as the second donor trait(D2). The HOMOenergy levels can be effectively modulated by only varying D2 unit because of the push-pull interaction between do-nor and acceptor units. Versus the D-A bipolymer PDPP-BDT, incorporation of the D2 unit into the copolymers candistinctly lower the highest occupied molecular orbital(HOMO) levels to -5.47 eV for PDDPP-BDT-DTPy, -5.38 eVfor PDDPP-BDT-CZ and -5.23 eV for PDDPP-BDT-FL, which shows the strong dependence on electron-donatingability. Density functional theory(DFT) simulation and X-ray diffraction(XRD) measurements also reveal the effectof the D2 units on the molecular geometry of the terpolymers and their molecular packing. Notably, aPDDPP-BDT-DTPy combined with a thiophene ring and forked tail pendant away from the backbone had less back-bone torsion and more compact packing than the other two counterparts. These results demonstrate that embedding asecond donor(D2) unit into the backbone to construct an A-D1-A-D2 structure can be an effective and direct strategyto manipulate the energy levels and molecular geometry and develop organic semiconducting materials.
基金financially supported by the National Natural Science Foundation of China (No. 21690073)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT-17R14)
文摘This contribution reports an efficient approach for preparing polycarbonate block terpolymers by immortal stepwise copolymerization of CO2 with different epoxides in the presence of enol chain transfer,mediated by robust cobalt catalyst systems consisting of the fluorine substituted salen Co(Ⅲ)NO3 or biphenol-linker bimetallic Co(Ⅲ)complex in conjunction with an ionic cocatalyst,PPNX(PPN=bis(triphenylphosphine)iminium,X=NO3–or 2,4-dinitrophenoxide).Various polycarbonate block terpolymers were obtained in perfectly unimodal distribution of their molecular weights with narrow polydispersity.They all possessed only one broad glass transition temperature,which could be adjusted by altering the length of different polycarbonate segments.
文摘For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.
文摘Six phenolic monomers (M1 - M6) have been synthesized, namely, potassium-3-(ortho,para)-hydroxy benzoyl dithiofor- mate (M1 and M2), (ortho,para)-(4-amino-5-mercapto-1,2,4 triazol-3-yl)-phenol (M3 and M4), (ortho,para)-hydroxy benzoic acid thiosemicarbazide (M5 and M6) and twelve novel chelating terpolymers (P1 - P12) were synthesized by ter- polymerization condensation reaction of these monomers with phenol or bis phenol-A and excess of formalin in basic medium. The monomers (M1 - M6) and their co-polymers (P1 - P12) were characterized by FT.IR, H1-NMR, elemental analysis and thermal analysis (TGA) and according to data obtained the structures of these compounds were proposed. Analytical evaluation of chelating selectivity of these polymers toward (Co2+, Cr3+, Cu2+, Cd2+, Pb2+) were achieved by batch equilibrium method, the results show that all synthetic resins have high efficiency toward (Cr3+) and less effi- ciency toward (Co2+, Cu2+, Cd2+ and Pb2+).
文摘The formation of polyacids in a glass-ionomer cement was computationally modeled. The polyacid modelled is an oligomer made up of three molecules: acrylic acid, itaconic acid and an additional molecule that acts as a spacer group between the previous two. Acryloyl and meta-acryloyl derivatives of some amino acids and related molecules such as N-vinyl pyrrolidone and N-vinyl caprolactam were used as spacer groups. Some of these molecules have been previously used experimentally as spacer groups. In this work the spacer behaviour of 15 different molecules was investigated. To our knowledge, this is the first computational attempt to model some promising molecules to be incorporated into glass-ionomer dental cements. The results revealed the best structural arrangement for the investigated molecules.
基金supported by the National Natural Science Foundation of China(No.20704040)
文摘Photoinitiated crosslinking of ethylene-propylene-diene terpolymer (EPDM) blends filled with calcium carbonate, talc and calcined kaolin (CK) in the presence of benzil dimethyl ketal as photoinitiator and trimethylolpropane triacrylate as crosslinker and their related properties have been studied by different analytical methods, The results from gel content and heat extension determination show that the efficiency ofphotocrosslinking of EPDM increases with increasing the content of diene and its molecular weight. The EPDM blends with 100 phr different inorganic fillers can be photocrosslinked to gel content of above 60% by 5 s UV-irradiation under optimum conditions. Under the same conditions of irradiation, the orders of photocrosslinking rate and final gel content are EPDM/CaCO3 〉 EPDM/talc 〉 EPDM/CK. The data from thermogravimetric analysis, dynamic mechanical thermal analysis, electrical properties, mechanical tests and scanning electron microscopy show that UV irradiation crosslinking apparently enhances the thermal stability, mechanical properties and electrical properties of the photocrosslinked EPDM/inorganic filler samples. Although the attenuated total-reflection FTIR data show that inorganic fillers can promote the surface photo-oxidation of EPDM/inorganic filler samples with increasing the irradiation time, the above related properties of the photocrosslinked EPDM blends irradiated within 5 s are enough to satisfy many applications in the cable industry.
文摘4-tert-butylstyrene-EPDM-divinylbenzene graft terpolymer (PBED) was prepared by graft cross-polymerization in toluene using BPO as an initiator. The gel-PBED and solPBED were isolated from extraction of tetrahydrofuran (THF), and then they were identified by IR spectroscopy. The maximum oil-absorptivity of gel-PBED produced from the optinum reaction conditions was 8 420% but its swelling rate was very low. The highest oil-absorptivity of photocrosslinked sol-PBED film was 5 800%. Although its oil absorbency was not as high as gel-PBED' s, swelling rate was higher than that of gelPBED and was suitable for commercial purpose. After swelling in oil, neither gel PBED nor photocrosslinked sol-PBED film having high oil-absorptivity had sufficient mechanical strength to be taken out of oil wholly. As is known, composite technique is one of the useful methods for reinforcing them. Fibers, sponges and non-woven cloths were used as reinforcers or supporters in this work. Oil-absorptivities and swelling kinetics were evaluated by method ASTM (F726 - 81 ) and an experimental equation. The mechanical properties and the morphologies of some composites were measured by tensile tester and SEM , respectively.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51703228,51673201,21835006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201903)。
文摘Compared to regular conjugated polymers,the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene(NF)-based polymer solar cells(PSCs)due to their disordered chemical structures.In this work,we report two random terpolymer donors(PBNB80 and PBNB50)by tuning the molar ratio of electron-accepting units of 1,3-di(thiophen-2-yl)naphtho[2,3-c]thiophene-4,9-dione(NTD)and 1,3-bis(4-chlorothiophen-2-yl)-4 H,8 H-benzo[1,2-c:4,5-c’]dithiophene-4,8-dione(ClBDD),at the same time,the parent polymers(PBNB100 and PBNB00)are also compared to study.These four polymer donors exhibit similar optical bandgaps and gradually deepen highest occupied molecular orbital levels.Importantly,aggregation and self-organization properties of the random terpolymer donors are optimized,which result in the better morphology and crystal coherence length after blending with NF acceptor of BO-4 Cl.Particularly,a PBNB80:BO-4 Cl blend forms an optimal nanoscale phase-separation morphology,thereby producing an outstanding power conversion efficiency of 16.0%,which is much higher than those(12.8%and 10.7%)of their parent binary polymer donor-based devices.This work demonstrates that rational using terpolymerization strategy to prepare random terpolymer is a very important method to achieve highly efficient NF-PSCs.
文摘The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene(PP)/ethylene-propylene-diene terpolymer(EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20 ℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends; (2) The β-type crystal structure of PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.
基金Projects supported by the Science Fund of the Chinese Academy of Sciences
文摘The charge-transfer complex of maleic anhydride and vinyl acetate was copolymerized under UV light. The chain composition and structure of the copolymer were analyzed with conductometry and NMR, and the chain sequence was determined as alternating. The copolymerization rates at different feed ratios, temperatures and in different solvents were investigated, giving evidence to the very active involvement of the CT complexes in the copolymerization. Terpolymerization with acrylonitrile also showed that the complex mechanism was a proper one for this system.
基金This Paper was presented before the Symposium on Polymers,Chengdu,P.R.China.Nov,14-18,1989
文摘The transition behaviour of the blends of isotactic polypropylene (i-PP) with ethylene-propylene terpolymer (EPDM) containing 42 wt% propylene was investigated by dynamic mechanical analysis technique (DMA). Owing to its high propylene content, EPDM is compatible with i-PP to some degree. The interaction between the two components was strengthened. As expected, for partially compatible system the glass transition temperature of i-PP in the blends shifted to lower temperature. It was found that there existed two transitions, αEPDM and βEPDM, for the EPDM used in this work. The former was considered to be the glass transition of the random chain segments of EPDM, while the latter the local motion of the long ethylene sequences in EPDM. The unusual transition behaviour of αEPDM in the blends was explained in terms of the greater thermal expansion of EPDM and the compatibility of the two components. On the other hand, the βEPDM changed with the composition of the blends in a regular manner.
文摘Copolycondensation mechanisms for the terpolyester system from m-methoxy-p-acetoxybenzoic acid,p-acetoxybenzoic acid and poly(ethylene terephthalate)are first investigatedby high resolution proton NMR spectroscopy at 400 MHz.A series of reactivity ratios of thecopolycondensation reactions are given.The results shown that the m-methoxy-p-acetoxybenzoicacid tends to homopolymerize,while the p-acetoxybenzoic acid,and the ethylene terephthalate unitespecially,tend to copolymerize with the m-methoxy-p-acetoxybenzoic acid.
基金Nano Project Foundation of Shanghai Technology Committee,China(No.0652nm039)Shanghai Leading Academic Discipline Project,China(No.B502)Shanghai Key Laboratory Proejct,China(No.08DZ2230500)
文摘A novel surface modifying agent and internal compatilizer of inorganic and macromolecule composite materials,P(St/MAH/BA)terpolymer,was synthesized in butanone by solution polymerization method using styrene(St),maleic anhydride(MAH),and butyl acrylate(BA)as monomers and azobisisobutyronitrile(AIBN)as an initiator.Some affecting factors on terpolymers yields such as polymerization time,reaction temperature,solvent volume,initiator content,and reactants ratios were studied.Furthermore,the structure and thermal properties of terpolymers were primarily characterized and determined by Fourier Transform Infrared Spectroscopy(FTIR),nuclear magnetic resonance(NMR),thermogravimetric analysis(TGA),and gel permeation chromatography(GPC).The results indicate that the terpolymers are random polymers and the yields are low,but the thermal decomposed temperature of terpolymers P(St/MAH/BA)is around 220 ℃ and the average molecular weights(Mw)achieve 1.189×105 g·mol-1.
文摘Synthesis of terpolymers consisting of two electron-donating monomers, viz. styrene and vinyl acetate with one electron-accepting monomer, i.e. acrylonitrile, initiated by p-nitrobenzyl triphenyl phosphonim ylide in dioxane as diluent at 65°C for 150 min has been studied. The kinetic expression is Rpα[I]0.8[Sty] 1.2[VA] 1.4 [AN]1.2. The terpolymer composition was determined by the Kelen-Tüdos method. The values of reactivity ratios using r1 (Sty + VA) = 0.1 and r2 (AN) = 0.005. The overall activation energy is 46 kJ●mol●L–1. The formation of terpolymer is confirmed by the FTIR spectra showing bands at 3030 cm–1, 1598 cm–1, and 2362 cm–1, confirming the presence of phenyl, acetoxy and nitrile group respectively. The terpolymer has been characterized by 1H-Nuclear Magnetic Resonance, 13C-Nuclear Magnetic Resonance. The Differential Scanning Calorimetric curve shows the Tg of the polymer as 149.5°C. A scanning electron microscope confirms the polymer to be phosphorus free. Electron.Spin.Resonance spectra confirms phenyl radical responsible for initiation.
基金financially supported by the National Natural Science Foundation of China (NSFC) (Nos.51973032,21905043,51833004 and 52333006)the Jiangxi Provincial Natural Science Foundation (Nos.20212ACB203005,20224ACB214002,20212BAB213018 and 20224BAB203015)+2 种基金the Thousand Talents Plan of Jiangxi Province (No.jxsq2019101051)the Innovation Foundation for graduate students of Jiangxi Normal University (No.YJS2021018)the financial support from Research Grants Council (RGC) of Hong Kong (General Research Fund No.14303519)。
文摘Incorporation of siloxane-functionalized units into polymers backbone has proven to be an efficient strategy to improve photovoltaic performance. In this work, a low-cost siloxane-containing unit was developed to construct a series of terpolymers, and the effects of siloxane on the polymer performance were systematically studied. Different contents of thiophene containing siloxane-functionalized side chain were introduced into PM6 to obtain a series of polymers(PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30). The siloxane-functionalized side chains in polymers have only a slight effect on the absorption behavior and frontier molecular orbitals. However, when the siloxane content increased, the terpolymers' aggregation property decreased and the temperature-dependency increased, leading to improved donor-acceptor compatibility. The power conversion efficiency(PCE) based on PM6:Y6, PM6-SiO-20:Y6 and PM6-SiO-30:Y6 devices was 15.64%, 16.03% and 15.82%, respectively. In comparison, the active layer based on PM6-SiO-10:Y6 exhibits the most appropriate phase separation morphology, resulting in effective exciton dissociation, more balanced hole-electron transport and less recombination. Consequently, the highest PCE of 16.69% with an outstanding shortcircuit current density of 26.96 mA·cm^(-2) was obtained, which are one of the highest values for siloxane-functionalized polymer-based devices.This work demonstrates that finely controlling the content of siloxane-functionalized thiophene is beneficial for obtaining high-performance terpolymer donors and provides a novel and low-cost method to improve photovoltaic performance.