利用TERRA和AQUA共同反演气溶胶光学厚度和地表反射率特征,对其原理及方法进行了详细的讨论。通过Terra和Aqua两颗卫星对同一地点的不同角度的观测,结合多个光学通道的信息,反演了北京地区光学厚度及地表反射率信息。反演的气溶胶光学...利用TERRA和AQUA共同反演气溶胶光学厚度和地表反射率特征,对其原理及方法进行了详细的讨论。通过Terra和Aqua两颗卫星对同一地点的不同角度的观测,结合多个光学通道的信息,反演了北京地区光学厚度及地表反射率信息。反演的气溶胶光学厚度同地面观测的结果相比具有很好的一致性。同时,对地表反射率及气溶胶波长指数等也进行了讨论和对比,结果显示,对北京地区,MOD IS 1通道地表反射率和7通道地表反射率的比在0.66左右,3通道和7通道的比在0.28左右。相比于NASA暗背景全球反演算法中1、3通道和7通道的比为0.50和0.25的处理方法,反演得到的气溶胶光学厚度结果也较好。展开更多
Recent studies have explored the relationship between aerosol optical depth (AOD) measurements by satellite sensors and concentrations of particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5). Howeve...Recent studies have explored the relationship between aerosol optical depth (AOD) measurements by satellite sensors and concentrations of particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5). However, relatively little is known about spatial and temporal patterns in this relationship across the contiguous United States. In this study, we investigated the relationship between US Environmental Protection Agency estimates of PM2.5 concentrations and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD measurements provided by two NASA satellites (Terra and Aqua) across the contiguous United States during 2005. We found that the combined use of both satellite sensors provided more AOD coverage than the use of either satellite sensor alone, that the correlation between AOD measurements and PM2.5 concentrations varied substantially by geographic location, and that this correlation was stronger in the summer and fall than that in the winter and spring.展开更多
Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a...Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a physics-based algorithm is pre- sented to integrate four pairs of MODIS measurements from the Terra and Aqua satellites to retrieve simultaneously atmospheric temperature-humidity profile, land-surface temperature and emissivity. Three pairs of MODIS data at two field sites in China, Luancheng and Poyang Lake areas, have been chosen to test and validate the model. Two pairs of atmospheric tem- perature and humidity profiles, land surface temperature (LST), and land surface emissivity (LSE) have been retrieved simul- taneously for every pair of MODIS measurements respectively by the proposed physical algorithm for the study area. The synchronous field measurements at two field sites were conducted to validate the retrieval LST, the differences between the retrieved LST and the field measurements are in the range of -0.15 K and 1.11 K. The emissivity errors of MODIS bands 31 and 32, compared with the EOS MODIS LST/LSE data products (MOD11_L2/MYD11_L2 V5) by the physics-based day/night algorithm, are from 0.0018 to 0.44 and from 0.0058 to 1.24, respectively. Meanwhile, the retrieved atmospheric profiles fully agree with the standard atmospheric temperature-water vapor profiles and with the results from single MODIS data onboard Terra or Aqua satellite by the former two-step physical algorithm. Therefore, the proposed algorithm is robust enough to improve the retrieval accuracy of the atmospheric profiles and land surface parameters. And it will have four pairs of the retrieval results for one area each day by integrating these MODIS measurements from Terra and Aqua satellites.展开更多
Clouds can influence climate through many complex interactions within the hydrological cycle. Due to the important effects of cloud cover on climate, it is essential to study its variability over certain geographical ...Clouds can influence climate through many complex interactions within the hydrological cycle. Due to the important effects of cloud cover on climate, it is essential to study its variability over certain geographical areas. This study provides a spatial and temporal distribution of sky conditions, cloudy, partly cloudy, and clear days, in Iran. Cloud fraction parameters were calculated based on the cloud product (collection 6_L2) obtained from the Moderate Resolution Imaging Spectroradiorneter (MODIS) sensors on board the Terra (MOD06) and Aqua (MYD06) satellites. The cloud products were collected daily from January 1, 2003 to December 31, 2014 (12 years) with a spatial resolution of 5 km × 5 km. First, the cloud fraction data were converted into a regular geographic coordinate network over Iran. Then, the estimations from both sensors were analyzed. Results revealed that the maximum annual frequency of cloudy days occurs along the southern shores of the Caspian Sea, while the minimum annual frequency occurs in southeast Iran. On average, the annual number of cloudy and clear-sky days was 88 and 256 d from MODIS Terra, as compared to 96 and 244 d from MODIS Aqua. Generally, cloudy and partly cloudy days decrease from north to south, and MODIS Aqua overestimates the cloudy and partly cloudy days compared to MODIS Terra.展开更多
This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun p...This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun photometer over Sanya (18.23°N,109.52°E),a tropical coastal site in China,from July 2005 to June 2006.The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the Microtops II sun photometer.The correlation coefficients for the linear regression fits (R2) are 0.83 for Terra and 0.78 for Aqua,and the regressed intercepts are near zero (0.005 for Terra,0.009 for Aqua).However,the Terra and Aqua MODIS are found to consistently underestimate AOD with respect to the Microtops II sun photometer,with slope values of 0.805 (Terra) and 0.767 (Aqua).The comparison of the monthly mean AOD indicates that for each month,the Terra and Aqua MODIS retrievals are matched with corresponding Microtops measurements but are systematically less than those of the Microtops.This validation study indicates that the Terra and Aqua MODIS AOD retrievals can adequately characterize the AOD distributions over the tropical coastal region of China,but further efforts to eliminate systematic errors are needed.展开更多
文摘利用TERRA和AQUA共同反演气溶胶光学厚度和地表反射率特征,对其原理及方法进行了详细的讨论。通过Terra和Aqua两颗卫星对同一地点的不同角度的观测,结合多个光学通道的信息,反演了北京地区光学厚度及地表反射率信息。反演的气溶胶光学厚度同地面观测的结果相比具有很好的一致性。同时,对地表反射率及气溶胶波长指数等也进行了讨论和对比,结果显示,对北京地区,MOD IS 1通道地表反射率和7通道地表反射率的比在0.66左右,3通道和7通道的比在0.28左右。相比于NASA暗背景全球反演算法中1、3通道和7通道的比为0.50和0.25的处理方法,反演得到的气溶胶光学厚度结果也较好。
文摘Recent studies have explored the relationship between aerosol optical depth (AOD) measurements by satellite sensors and concentrations of particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5). However, relatively little is known about spatial and temporal patterns in this relationship across the contiguous United States. In this study, we investigated the relationship between US Environmental Protection Agency estimates of PM2.5 concentrations and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD measurements provided by two NASA satellites (Terra and Aqua) across the contiguous United States during 2005. We found that the combined use of both satellite sensors provided more AOD coverage than the use of either satellite sensor alone, that the correlation between AOD measurements and PM2.5 concentrations varied substantially by geographic location, and that this correlation was stronger in the summer and fall than that in the winter and spring.
基金supported by the National Natural Science Foundation of China (Grant No. 40471086)the National High Technology Research and Development Program of China (Grant No. 2006AA12Z102)
文摘Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a physics-based algorithm is pre- sented to integrate four pairs of MODIS measurements from the Terra and Aqua satellites to retrieve simultaneously atmospheric temperature-humidity profile, land-surface temperature and emissivity. Three pairs of MODIS data at two field sites in China, Luancheng and Poyang Lake areas, have been chosen to test and validate the model. Two pairs of atmospheric tem- perature and humidity profiles, land surface temperature (LST), and land surface emissivity (LSE) have been retrieved simul- taneously for every pair of MODIS measurements respectively by the proposed physical algorithm for the study area. The synchronous field measurements at two field sites were conducted to validate the retrieval LST, the differences between the retrieved LST and the field measurements are in the range of -0.15 K and 1.11 K. The emissivity errors of MODIS bands 31 and 32, compared with the EOS MODIS LST/LSE data products (MOD11_L2/MYD11_L2 V5) by the physics-based day/night algorithm, are from 0.0018 to 0.44 and from 0.0058 to 1.24, respectively. Meanwhile, the retrieved atmospheric profiles fully agree with the standard atmospheric temperature-water vapor profiles and with the results from single MODIS data onboard Terra or Aqua satellite by the former two-step physical algorithm. Therefore, the proposed algorithm is robust enough to improve the retrieval accuracy of the atmospheric profiles and land surface parameters. And it will have four pairs of the retrieval results for one area each day by integrating these MODIS measurements from Terra and Aqua satellites.
基金Under the auspices of Faculty of Geographical Science and Planning,University of Isfahan,Doctoral Climatology Project(No.168607/94)
文摘Clouds can influence climate through many complex interactions within the hydrological cycle. Due to the important effects of cloud cover on climate, it is essential to study its variability over certain geographical areas. This study provides a spatial and temporal distribution of sky conditions, cloudy, partly cloudy, and clear days, in Iran. Cloud fraction parameters were calculated based on the cloud product (collection 6_L2) obtained from the Moderate Resolution Imaging Spectroradiorneter (MODIS) sensors on board the Terra (MOD06) and Aqua (MYD06) satellites. The cloud products were collected daily from January 1, 2003 to December 31, 2014 (12 years) with a spatial resolution of 5 km × 5 km. First, the cloud fraction data were converted into a regular geographic coordinate network over Iran. Then, the estimations from both sensors were analyzed. Results revealed that the maximum annual frequency of cloudy days occurs along the southern shores of the Caspian Sea, while the minimum annual frequency occurs in southeast Iran. On average, the annual number of cloudy and clear-sky days was 88 and 256 d from MODIS Terra, as compared to 96 and 244 d from MODIS Aqua. Generally, cloudy and partly cloudy days decrease from north to south, and MODIS Aqua overestimates the cloudy and partly cloudy days compared to MODIS Terra.
基金supported by the National Basic Research Program of China (Grant No. 2006CB 403702)
文摘This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun photometer over Sanya (18.23°N,109.52°E),a tropical coastal site in China,from July 2005 to June 2006.The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the Microtops II sun photometer.The correlation coefficients for the linear regression fits (R2) are 0.83 for Terra and 0.78 for Aqua,and the regressed intercepts are near zero (0.005 for Terra,0.009 for Aqua).However,the Terra and Aqua MODIS are found to consistently underestimate AOD with respect to the Microtops II sun photometer,with slope values of 0.805 (Terra) and 0.767 (Aqua).The comparison of the monthly mean AOD indicates that for each month,the Terra and Aqua MODIS retrievals are matched with corresponding Microtops measurements but are systematically less than those of the Microtops.This validation study indicates that the Terra and Aqua MODIS AOD retrievals can adequately characterize the AOD distributions over the tropical coastal region of China,but further efforts to eliminate systematic errors are needed.