Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea(SCS)were measured to make a comparison during terrestrial vegetation reconstruction from~42 ka to~7 ka.The results showed that te...Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea(SCS)were measured to make a comparison during terrestrial vegetation reconstruction from~42 ka to~7 ka.The results showed that terrestrial vegetation record from long-chain n-alkanes matched well with previous studies in nearby cores,showing that more C_(4)plants developed during the Last Glacial Maximum(LGM)and C_(3)plants dominated in the interglacial period.However,these scenarios were not revealed by terrestrial vegetation reconstruction using long-chain n-alkanols,which showed C_(3)plant expansion during the LGM.The discrepancy during the interglacial period could be attributed to the aerobic degradation of functionalized long-chain n-alkanols in the oxygen-rich bottom water,resulting in poor preservation of terrestrial vegetation signals.On the other hand,the different advantages of functionalized n-alkanols and non-functional n-alkanes to record local and distal vegetation signals,respectively,may offer a potential explanation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water.Nevertheless,large variations on n-alkyl lipid compositions in C_(3)/C_(4)plants could play a part in modulating sedimentary long-chain n-alkanols and n-alkanes toward different vegetation signals,thereby suggesting that caution must be taken in respect to the terrestrial vegetation reconstruction using long-chain n-alkanes and long-chain n-alkanols.展开更多
The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP ...The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP in the Yangtze River Delta from 2000 to 2020 were analyzed based on the soil respiration model.The driving influences of ecosystem structure evolution,temperature,rainfall,and human activities on NEP were studied.The results show that the NEP shows an overall distribution pattern of high in the southeast and low in the northwest.The area of carbon sinks is larger than that of the carbon sources.NEP spatial heterogeneity is significant.NEP change trend is basically unchanged or significantly better.The future change trend in most areas will be continuous decrease.Compared with temperature,NEP are more sensitive to precipitation.The positive influence of human activities on NEP is mainly observed in north-central Anhui and northern Jiangsu coastal areas,while the negative influence is mainly found in highly urbanized areas.In the process of ecosystem structure,the contribution of unchanged areas to NEP change is greater than that of changed areas.展开更多
The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global c...The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global change and terrestrial ecosystems. This article reviews the current research status of net primary productivity of terrestrial vegetation, and comprehensively analyzes the advantages and disadvantages of three types of productivity estimation models, climate relative models, biogeochemical models, and light energy utilization models. The light energy utilization models have become the mainstream method for estimating vegetation net primary productivity because they can directly use remote sensing data. However, there are still many deficiencies in the estimation of vegetation net primary productivity, which need to be further improved and tested.展开更多
Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon c...Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon cycle. A novel approach combining molecular proxies and compound-specific carbon isotopes is used to quantitatively constrain the origins and transport mechanisms of TOM in surface sediments from the ECS shelf. The content of terrestrial biomarkers of(C_(27)+C_(29)+C_(31)) n-alkanes(52 to 580 ng g^(-1)) revealed a seaward decreasing trend, the δ^(13)CTOC values(-20.6‰ to-22.7‰) were more negative near the coast, and the TMBR(terrestrial and marine biomarker ratio) values(0.06 to 0.40) also revealed a seaward decreasing trend. These proxies all indicated more TOM(up to 48%) deposition in the coastal areas. The Alkane Index, the ratio of C_(29)/(C_(29)+C_(31)) n-alkanes indicated a higher proportion of grass vegetation in the coastal area; While the δ13C values of C_(29) n-alkane(-_(29).3‰ to-33.8‰) indicated that terrestrial plant in the sediments of the ECS shelf were mainly derived from C_3 plants. Cluster analysis afforded detailed estimates of different-sourced TOM contributions and transport mechanisms. TOM in the Zhejiang-Fujian coastal area was mostly delivered by the Changjiang River, and characterized by higher %TOM(up to 48%), higher %C_3 plant OM(68%-85%) and higher grass plant OM(56%-61%); TOM in the mid-shelf area was mostly transported by aerosols, and characterized by low %TOM(less than 17%), slightly lower C_3 plant OM(56%-72%) and lower grass plant OM(49%-55%).展开更多
基金The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0104the Science and Technology Program of Guangzhou,China under contract No.201804010264+3 种基金the Guangdong MEPP Fund under contract No.GDOE[2019]A41the National Natural Science Foundation of China under contract No.41706059the Fund of Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences under contract No.ISEE2020YB05the State Key R&D Project under contract No.2016YFA0601104。
文摘Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea(SCS)were measured to make a comparison during terrestrial vegetation reconstruction from~42 ka to~7 ka.The results showed that terrestrial vegetation record from long-chain n-alkanes matched well with previous studies in nearby cores,showing that more C_(4)plants developed during the Last Glacial Maximum(LGM)and C_(3)plants dominated in the interglacial period.However,these scenarios were not revealed by terrestrial vegetation reconstruction using long-chain n-alkanols,which showed C_(3)plant expansion during the LGM.The discrepancy during the interglacial period could be attributed to the aerobic degradation of functionalized long-chain n-alkanols in the oxygen-rich bottom water,resulting in poor preservation of terrestrial vegetation signals.On the other hand,the different advantages of functionalized n-alkanols and non-functional n-alkanes to record local and distal vegetation signals,respectively,may offer a potential explanation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water.Nevertheless,large variations on n-alkyl lipid compositions in C_(3)/C_(4)plants could play a part in modulating sedimentary long-chain n-alkanols and n-alkanes toward different vegetation signals,thereby suggesting that caution must be taken in respect to the terrestrial vegetation reconstruction using long-chain n-alkanes and long-chain n-alkanols.
基金National Key R&D Program of China,No.2018YFD1100101。
文摘The carbon cycle of terrestrial ecosystems is influenced by global climate change and human activities.Using remote sensing data and land cover products,the spatio-temporal variation characteristics and trends of NEP in the Yangtze River Delta from 2000 to 2020 were analyzed based on the soil respiration model.The driving influences of ecosystem structure evolution,temperature,rainfall,and human activities on NEP were studied.The results show that the NEP shows an overall distribution pattern of high in the southeast and low in the northwest.The area of carbon sinks is larger than that of the carbon sources.NEP spatial heterogeneity is significant.NEP change trend is basically unchanged or significantly better.The future change trend in most areas will be continuous decrease.Compared with temperature,NEP are more sensitive to precipitation.The positive influence of human activities on NEP is mainly observed in north-central Anhui and northern Jiangsu coastal areas,while the negative influence is mainly found in highly urbanized areas.In the process of ecosystem structure,the contribution of unchanged areas to NEP change is greater than that of changed areas.
文摘The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global change and terrestrial ecosystems. This article reviews the current research status of net primary productivity of terrestrial vegetation, and comprehensively analyzes the advantages and disadvantages of three types of productivity estimation models, climate relative models, biogeochemical models, and light energy utilization models. The light energy utilization models have become the mainstream method for estimating vegetation net primary productivity because they can directly use remote sensing data. However, there are still many deficiencies in the estimation of vegetation net primary productivity, which need to be further improved and tested.
基金the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources (No. MRE201301)the National Natural Science Foundation of China (No. 41506087)the ‘111’ Project (No. B13030)
文摘Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon cycle. A novel approach combining molecular proxies and compound-specific carbon isotopes is used to quantitatively constrain the origins and transport mechanisms of TOM in surface sediments from the ECS shelf. The content of terrestrial biomarkers of(C_(27)+C_(29)+C_(31)) n-alkanes(52 to 580 ng g^(-1)) revealed a seaward decreasing trend, the δ^(13)CTOC values(-20.6‰ to-22.7‰) were more negative near the coast, and the TMBR(terrestrial and marine biomarker ratio) values(0.06 to 0.40) also revealed a seaward decreasing trend. These proxies all indicated more TOM(up to 48%) deposition in the coastal areas. The Alkane Index, the ratio of C_(29)/(C_(29)+C_(31)) n-alkanes indicated a higher proportion of grass vegetation in the coastal area; While the δ13C values of C_(29) n-alkane(-_(29).3‰ to-33.8‰) indicated that terrestrial plant in the sediments of the ECS shelf were mainly derived from C_3 plants. Cluster analysis afforded detailed estimates of different-sourced TOM contributions and transport mechanisms. TOM in the Zhejiang-Fujian coastal area was mostly delivered by the Changjiang River, and characterized by higher %TOM(up to 48%), higher %C_3 plant OM(68%-85%) and higher grass plant OM(56%-61%); TOM in the mid-shelf area was mostly transported by aerosols, and characterized by low %TOM(less than 17%), slightly lower C_3 plant OM(56%-72%) and lower grass plant OM(49%-55%).