Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phe...Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.展开更多
In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol ...In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.展开更多
BACKGROUND The use of methyl-tertiary butyl ether(MTBE)to dissolve gallstones has been limited due to concerns over its toxicity and the widespread recognition of the safety of laparoscopic cholecystectomy.The adverse...BACKGROUND The use of methyl-tertiary butyl ether(MTBE)to dissolve gallstones has been limited due to concerns over its toxicity and the widespread recognition of the safety of laparoscopic cholecystectomy.The adverse effects of MTBE are largely attributed to its low boiling point,resulting in a tendency to evaporate.Therefore,if there is a material with a higher boiling point and similar or higher dissolubility than MTBE,it is expected to be an attractive alternative to MTBE.AIM To determine whether tert-amyl ethyl ether(TAEE),an MTBE analogue with a relatively higher boiling point(102°C),could be used as an alternative to MTBE in terms of gallstone dissolubility and toxicity.METHODS The in vitro dissolubility of MTBE and TAEE was determined by measuring the dry weights of human gallstones at predetermined time intervals after placing them in glass containers with either of the two solvents.The in vivo dissolubility was determined by comparing the weights of solvent-treated gallstones and control(dimethyl sulfoxide)-treated gallstones,after the direct infusion of each solvent into the gallbladder in both hamster models with cholesterol and pigmented gallstones.RESULTS The in vitro results demonstrated a 24 h TAEE-dissolubility of 76.7%,56.5%and 38.75%for cholesterol,mixed,and pigmented gallstones,respectively,which represented a 1.2-,1.4-,and 1.3-fold increase in dissolubility compared to that of MTBE.In the in vitro experiment,the 24 h-dissolubility of TAEE was 71.7%and 63.0%for cholesterol and pigmented gallstones,respectively,which represented a 1.4-and 1.9-fold increase in dissolubility compared to that of MTBE.In addition,the results of the cell viability assay and western blot analysis indicated that TAEE had a lower toxicity towards gallbladder epithelial cells than MTBE.CONCLUSION We demonstrated that TAEE has higher gallstone dissolubility properties and safety than those of MTBE.As such,TAEE could present an attractive alternative to MTBE if our findings regarding its efficacy and safety can be consistently reproduced in further subclinical and clinical studies.展开更多
The oxidation of dibenzothiophene(DBT) in decalin(as solvent) was conducted using oil-soluble oxidant tert-amyl hydroperoxide(TAHP).The effects of oxidant amount,reaction temperature,reaction time and catalyst w...The oxidation of dibenzothiophene(DBT) in decalin(as solvent) was conducted using oil-soluble oxidant tert-amyl hydroperoxide(TAHP).The effects of oxidant amount,reaction temperature,reaction time and catalyst were investigated in detail.The results showed that under the condition of ratio of TAHP to sulfur 3∶1,reaction temperature 90℃,reaction time 3h,the desulfurization rate was up to 95%.The catalyst was necessary to oxidize DBT with TAHP.Weak acid cationic exchange resin of "D113" large aperture acrylic acid series supported MoO3 catalyst has relatively high activities.After the repetitious use as catalyst for 10 times,it still has good activity.展开更多
以裂解 C_5和甲醇为原料、QRE 型大孔磺酸树脂为催化剂,研究了合成甲基叔戊基醚反应体系的非理想性。采用 WILSON 活度系数模型,计算了60~70℃各组分的活度系数。理论分析及计算结果表明:在醚化体系中,组分的活度系数主要与该组分摩尔...以裂解 C_5和甲醇为原料、QRE 型大孔磺酸树脂为催化剂,研究了合成甲基叔戊基醚反应体系的非理想性。采用 WILSON 活度系数模型,计算了60~70℃各组分的活度系数。理论分析及计算结果表明:在醚化体系中,组分的活度系数主要与该组分摩尔分数有关;由于甲醇的强极性,甲醇的活度系数随其摩尔分数的减小而增大,但均大于3.1;2-甲基-1-丁烯、2甲基-2-丁烯和甲基叔戊基醚的活度系数随组分摩尔分数的增加在0.89~1.19范围内增加;组分的活度系数均随温度的升高而降低,但变化不大。以60℃和70℃的实验数据拟合了组分活度系数表达式,其相关系数均大于0.97,可用于组分活度系数的计算。展开更多
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.
文摘In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.
文摘BACKGROUND The use of methyl-tertiary butyl ether(MTBE)to dissolve gallstones has been limited due to concerns over its toxicity and the widespread recognition of the safety of laparoscopic cholecystectomy.The adverse effects of MTBE are largely attributed to its low boiling point,resulting in a tendency to evaporate.Therefore,if there is a material with a higher boiling point and similar or higher dissolubility than MTBE,it is expected to be an attractive alternative to MTBE.AIM To determine whether tert-amyl ethyl ether(TAEE),an MTBE analogue with a relatively higher boiling point(102°C),could be used as an alternative to MTBE in terms of gallstone dissolubility and toxicity.METHODS The in vitro dissolubility of MTBE and TAEE was determined by measuring the dry weights of human gallstones at predetermined time intervals after placing them in glass containers with either of the two solvents.The in vivo dissolubility was determined by comparing the weights of solvent-treated gallstones and control(dimethyl sulfoxide)-treated gallstones,after the direct infusion of each solvent into the gallbladder in both hamster models with cholesterol and pigmented gallstones.RESULTS The in vitro results demonstrated a 24 h TAEE-dissolubility of 76.7%,56.5%and 38.75%for cholesterol,mixed,and pigmented gallstones,respectively,which represented a 1.2-,1.4-,and 1.3-fold increase in dissolubility compared to that of MTBE.In the in vitro experiment,the 24 h-dissolubility of TAEE was 71.7%and 63.0%for cholesterol and pigmented gallstones,respectively,which represented a 1.4-and 1.9-fold increase in dissolubility compared to that of MTBE.In addition,the results of the cell viability assay and western blot analysis indicated that TAEE had a lower toxicity towards gallbladder epithelial cells than MTBE.CONCLUSION We demonstrated that TAEE has higher gallstone dissolubility properties and safety than those of MTBE.As such,TAEE could present an attractive alternative to MTBE if our findings regarding its efficacy and safety can be consistently reproduced in further subclinical and clinical studies.
文摘The oxidation of dibenzothiophene(DBT) in decalin(as solvent) was conducted using oil-soluble oxidant tert-amyl hydroperoxide(TAHP).The effects of oxidant amount,reaction temperature,reaction time and catalyst were investigated in detail.The results showed that under the condition of ratio of TAHP to sulfur 3∶1,reaction temperature 90℃,reaction time 3h,the desulfurization rate was up to 95%.The catalyst was necessary to oxidize DBT with TAHP.Weak acid cationic exchange resin of "D113" large aperture acrylic acid series supported MoO3 catalyst has relatively high activities.After the repetitious use as catalyst for 10 times,it still has good activity.
文摘以裂解 C_5和甲醇为原料、QRE 型大孔磺酸树脂为催化剂,研究了合成甲基叔戊基醚反应体系的非理想性。采用 WILSON 活度系数模型,计算了60~70℃各组分的活度系数。理论分析及计算结果表明:在醚化体系中,组分的活度系数主要与该组分摩尔分数有关;由于甲醇的强极性,甲醇的活度系数随其摩尔分数的减小而增大,但均大于3.1;2-甲基-1-丁烯、2甲基-2-丁烯和甲基叔戊基醚的活度系数随组分摩尔分数的增加在0.89~1.19范围内增加;组分的活度系数均随温度的升高而降低,但变化不大。以60℃和70℃的实验数据拟合了组分活度系数表达式,其相关系数均大于0.97,可用于组分活度系数的计算。