针对Tesseract文字识别框架对输入图像的像素要求,以及图像采集过程中可能出现的歪斜、黑边等情况,基于文字识别流程,对预处理阶段的二值化、缩放、边框处理与倾斜矫正进行研究与C++代码的实现。对文字识别OCR(optical character recogn...针对Tesseract文字识别框架对输入图像的像素要求,以及图像采集过程中可能出现的歪斜、黑边等情况,基于文字识别流程,对预处理阶段的二值化、缩放、边框处理与倾斜矫正进行研究与C++代码的实现。对文字识别OCR(optical character recognition,光学字符识别)的流程进行了概述,重点研究图像缩放与二值化过程,利用双线性插值算法逐像素、逐行分别对横纵坐标进行线性插值,完成图像缩放;利用最大类间方差法、聚类的思想,遍历灰度值,获取最佳二值化阈值,实现图像的二值化。参考OpenCV库函数,提出图像边框与偏移的处理思路。在VS2015环境下基于Tesseract框架,对整个流程进行实现,介绍了Tesseract框架的接口与功能、输入与输出参数。图像的预处理对文字识别必不可少,有利于Tesseract之后的识别工作。展开更多
为提高变电站操作的安全性,文章研制了一种基于光学字符识别(Optical Character Recognition,OCR)技术的变电站防误操作系统,首先从功能上对系统进行了定义,然后对系统的架构进行了设计,最后对系统进行了功能性测试。变电站值班人员通过...为提高变电站操作的安全性,文章研制了一种基于光学字符识别(Optical Character Recognition,OCR)技术的变电站防误操作系统,首先从功能上对系统进行了定义,然后对系统的架构进行了设计,最后对系统进行了功能性测试。变电站值班人员通过Android平板等便携式设备采集工作间隔和设备标识牌图像,利用Tesseract识别引擎进行文字识别,并与预设工作票内操作间隔及设备的关键字进行比对确认,可以有效防止变电站内的误操作,提高变电站运维自动化管理能力。通过实验和现场测试验证了该系统的有效性和工程实用性。展开更多
Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to...Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to the social conditions in which some communities live and not everyone has access to it. This paper aims to serve as a reference point and guide for users who are interested in monitoring their health, particularly their blood analysis to be aware of their health condition in an easy way. This study introduces an algorithmic approach for extracting and analyzing Complete Blood Count (CBC) parameters from scanned images. The algorithm employs Optical Character Recognition (OCR) technology to process images containing tabular data, specifically targeting CBC parameter tables. Upon image processing, the algorithm extracts data and identifies CBC parameters and their corresponding values. It evaluates the status (High, Low, or Normal) of each parameter and subsequently presents evaluations, and any potential diagnoses. The primary objective is to automate the extraction and evaluation of CBC parameters, aiding healthcare professionals in swiftly assessing blood analysis results. The algorithmic framework aims to streamline the interpretation of CBC tests, potentially improving efficiency and accuracy in clinical diagnostics.展开更多
文摘针对Tesseract文字识别框架对输入图像的像素要求,以及图像采集过程中可能出现的歪斜、黑边等情况,基于文字识别流程,对预处理阶段的二值化、缩放、边框处理与倾斜矫正进行研究与C++代码的实现。对文字识别OCR(optical character recognition,光学字符识别)的流程进行了概述,重点研究图像缩放与二值化过程,利用双线性插值算法逐像素、逐行分别对横纵坐标进行线性插值,完成图像缩放;利用最大类间方差法、聚类的思想,遍历灰度值,获取最佳二值化阈值,实现图像的二值化。参考OpenCV库函数,提出图像边框与偏移的处理思路。在VS2015环境下基于Tesseract框架,对整个流程进行实现,介绍了Tesseract框架的接口与功能、输入与输出参数。图像的预处理对文字识别必不可少,有利于Tesseract之后的识别工作。
文摘为提高变电站操作的安全性,文章研制了一种基于光学字符识别(Optical Character Recognition,OCR)技术的变电站防误操作系统,首先从功能上对系统进行了定义,然后对系统的架构进行了设计,最后对系统进行了功能性测试。变电站值班人员通过Android平板等便携式设备采集工作间隔和设备标识牌图像,利用Tesseract识别引擎进行文字识别,并与预设工作票内操作间隔及设备的关键字进行比对确认,可以有效防止变电站内的误操作,提高变电站运维自动化管理能力。通过实验和现场测试验证了该系统的有效性和工程实用性。
文摘Health care is an important part of human life and is a right for everyone. One of the most basic human rights is to receive health care whenever they need it. However, this is simply not an option for everyone due to the social conditions in which some communities live and not everyone has access to it. This paper aims to serve as a reference point and guide for users who are interested in monitoring their health, particularly their blood analysis to be aware of their health condition in an easy way. This study introduces an algorithmic approach for extracting and analyzing Complete Blood Count (CBC) parameters from scanned images. The algorithm employs Optical Character Recognition (OCR) technology to process images containing tabular data, specifically targeting CBC parameter tables. Upon image processing, the algorithm extracts data and identifies CBC parameters and their corresponding values. It evaluates the status (High, Low, or Normal) of each parameter and subsequently presents evaluations, and any potential diagnoses. The primary objective is to automate the extraction and evaluation of CBC parameters, aiding healthcare professionals in swiftly assessing blood analysis results. The algorithmic framework aims to streamline the interpretation of CBC tests, potentially improving efficiency and accuracy in clinical diagnostics.