The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments...The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.展开更多
To meet the considerably increase of mobile data traffic and wireless communication connections around 2020,the 5th generation(5G)mobile network will necessarily consider more frequency bands,enabling technologies and...To meet the considerably increase of mobile data traffic and wireless communication connections around 2020,the 5th generation(5G)mobile network will necessarily consider more frequency bands,enabling technologies and diversified key performance indicators and test environments comparing with existing network,for example Long Term Evolution.More specifically,the obvious difference between 5G and previous wireless communication system are not only included eMBB(enhance mobile broadband) usage scenario,but also introduced mMTC(massive machine type communications)and URLLC(ultra-reliable and low latency communications) usage scenarios.Hence,in order to evaluate 5G related technologies,some novel test environments will be widely discussed,as well as,certain new key performance indicators will be drawn into5 G evaluation methodology for satisfied new requirements.We will discuss characteristic of these 4 candidate test environments,such as indoor isolated environment,high speed train environment;and the definition of 15 keys performance indicator will be explained and clarified,for example,Throughput,Network Energy Efficiency,Device Connection Density and so on.Furthermore,high-level assessment method of each test environment also will be initially considered.It is notable that an initial evaluation of indoor isolated environment also can be found,which the results show that there are 3 times average cell spectral efficiency than IMT-advanced's in same test environment.展开更多
Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrog...Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrogenated DLC films were measured on a ball-on-disk tribometer in different testing environments (humid air,dry air, dry O2, dry Ar and dry N2 ) sliding against Si3 N4 balls. The friction surfaces of the films and Si3 N4 balls were observed on a scanning electron microscope (SEM) and investigated by X-ray photoelectron spectroscopy (XPS). The results show that the tribological properties of the hydrogenated DLC films are strongly dependent on the testing environments. In dry Ar and dry N2 environments, the hydrogenated DLC films provide a superlow friction coefficient of about 0. 008 -0.01 and excellent wear resistance (wear life of above 56 km). In dry air and dry O2, the friction coefficient is increased to 0. 025 - 0.04 and the wear life is decreased to about 30 km. When sliding in moist air, the friction coefficient of the films is further increased to 0. 08 and the wear life is decreased to 10. 4 km. SEM and XPS analyses show that the tribological behaviors appear to rely on the transferred carbon-rich layer processes on the Si3 N4 balls and on the friction-induced oxidation of the films controlled by the nature of the testing environments.展开更多
In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to g...In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction(GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley(YaRV), China. Four traits(cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none.展开更多
Based on the experience of environmental acceptance tests for power transmission projects, the problems found in acceptance tests and the system shortcomings of acceptance test itself are analyzed. Recommendations are...Based on the experience of environmental acceptance tests for power transmission projects, the problems found in acceptance tests and the system shortcomings of acceptance test itself are analyzed. Recommendations are provided to improve the future work.展开更多
As many chemicals with genotoxic potential are emitted to surface water, genotoxicity tests are gaining importance which led to the development of several techniques to detect directly DNA damage. The relevance of det...As many chemicals with genotoxic potential are emitted to surface water, genotoxicity tests are gaining importance which led to the development of several techniques to detect directly DNA damage. The relevance of detecting the genotoxic risks associated with water pollution was firstly perceived in the late 1970s. Since that time several tests have been developed for evaluating DNA alterations in aquatic animals. These tests rely on the premise that any changes to DNA may have long-lasting and profound consequences. Sister chromatid test, chromosome aberrations, comet assay, and micronucleus test are currently the most widely employed methods to detect DNA lesions in ecotoxicology. Chromosomal aberration and sister chromatid exchanges are time consuming, resource intensive and require proliferating cell population. Hence, Comet assay and Micronucleus test as cost effective and more sensitive test systems have now been introduced for assessing the genotoxicity of chemicals. This review presents a synthesis of the state of the art in the methodologies of comet assay and micronucleus test and their contributions in aquatic environmental research. The text explores the latest knowledge and thinking on these very important approaches for the assessment of environmental health, management, and conservation. The primary concern of the present review is the measurement of genotoxic potential in aquatic organisms under field and laboratory conditions, where effects of chemicals at different levels of biological organization can be examined.展开更多
文摘The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.
文摘To meet the considerably increase of mobile data traffic and wireless communication connections around 2020,the 5th generation(5G)mobile network will necessarily consider more frequency bands,enabling technologies and diversified key performance indicators and test environments comparing with existing network,for example Long Term Evolution.More specifically,the obvious difference between 5G and previous wireless communication system are not only included eMBB(enhance mobile broadband) usage scenario,but also introduced mMTC(massive machine type communications)and URLLC(ultra-reliable and low latency communications) usage scenarios.Hence,in order to evaluate 5G related technologies,some novel test environments will be widely discussed,as well as,certain new key performance indicators will be drawn into5 G evaluation methodology for satisfied new requirements.We will discuss characteristic of these 4 candidate test environments,such as indoor isolated environment,high speed train environment;and the definition of 15 keys performance indicator will be explained and clarified,for example,Throughput,Network Energy Efficiency,Device Connection Density and so on.Furthermore,high-level assessment method of each test environment also will be initially considered.It is notable that an initial evaluation of indoor isolated environment also can be found,which the results show that there are 3 times average cell spectral efficiency than IMT-advanced's in same test environment.
基金Projects(59925513 50323007) supported by the National Natural Science Foundation of China+1 种基金 Project(2003AA305670) supported by Hi-tech Research and Development Program of China Project supported by the "Top Hundred Talents Program" of Chinese Academy of Sciences
文摘Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrogenated DLC films were measured on a ball-on-disk tribometer in different testing environments (humid air,dry air, dry O2, dry Ar and dry N2 ) sliding against Si3 N4 balls. The friction surfaces of the films and Si3 N4 balls were observed on a scanning electron microscope (SEM) and investigated by X-ray photoelectron spectroscopy (XPS). The results show that the tribological properties of the hydrogenated DLC films are strongly dependent on the testing environments. In dry Ar and dry N2 environments, the hydrogenated DLC films provide a superlow friction coefficient of about 0. 008 -0.01 and excellent wear resistance (wear life of above 56 km). In dry air and dry O2, the friction coefficient is increased to 0. 025 - 0.04 and the wear life is decreased to about 30 km. When sliding in moist air, the friction coefficient of the films is further increased to 0. 08 and the wear life is decreased to 10. 4 km. SEM and XPS analyses show that the tribological behaviors appear to rely on the transferred carbon-rich layer processes on the Si3 N4 balls and on the friction-induced oxidation of the films controlled by the nature of the testing environments.
基金funded by the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(12)5035)the National Natural Science Foundation of China(30971735)+1 种基金the China Agriculture Research System(CARS-18-20)the Special Fund for Agro-Scientific Research in the Public Interest of China(Impact of Climate Change on Agriculture Production of China,200903003)
文摘In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction(GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley(YaRV), China. Four traits(cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none.
文摘Based on the experience of environmental acceptance tests for power transmission projects, the problems found in acceptance tests and the system shortcomings of acceptance test itself are analyzed. Recommendations are provided to improve the future work.
文摘As many chemicals with genotoxic potential are emitted to surface water, genotoxicity tests are gaining importance which led to the development of several techniques to detect directly DNA damage. The relevance of detecting the genotoxic risks associated with water pollution was firstly perceived in the late 1970s. Since that time several tests have been developed for evaluating DNA alterations in aquatic animals. These tests rely on the premise that any changes to DNA may have long-lasting and profound consequences. Sister chromatid test, chromosome aberrations, comet assay, and micronucleus test are currently the most widely employed methods to detect DNA lesions in ecotoxicology. Chromosomal aberration and sister chromatid exchanges are time consuming, resource intensive and require proliferating cell population. Hence, Comet assay and Micronucleus test as cost effective and more sensitive test systems have now been introduced for assessing the genotoxicity of chemicals. This review presents a synthesis of the state of the art in the methodologies of comet assay and micronucleus test and their contributions in aquatic environmental research. The text explores the latest knowledge and thinking on these very important approaches for the assessment of environmental health, management, and conservation. The primary concern of the present review is the measurement of genotoxic potential in aquatic organisms under field and laboratory conditions, where effects of chemicals at different levels of biological organization can be examined.