In clinical trials, the primary efficacy endpoint often corresponds to a so-called "composite endpoint". Composite endpoints combine several events of interest within a single outcome variable. Thereby it is...In clinical trials, the primary efficacy endpoint often corresponds to a so-called "composite endpoint". Composite endpoints combine several events of interest within a single outcome variable. Thereby it is intended to enlarge the expected effect size and thereby increase the power of the study. However, composite endpoints also come along with serious challenges and problems. On the one hand, composite endpoints may lead to difficulties during the planning phase of a trial with respect to the sample size calculation, asthe expected clinical effect of an intervention on the composite endpoint depends on the effects on its single components and their correlations. This may lead to wrong assumptions on the sample size needed. Too optimistic assumptions on the expected effect may lead to an underpowered of the trial, whereas a too conservatively estimated effect results in an unnecessarily high sample size. On the other hand, the interpretation of composite endpoints may be difficult, as the observed effect of the composite does not necessarily reflect the effects of the single components. Therefore the demonstration of the clinical efficacy of a new intervention by exclusively evaluating the composite endpoint may be misleading. The present paper summarizes results and recommendations of the latest research addressing the above mentioned problems in the planning, analysis and interpretation of clinical trials with composite endpoints, thereby providing a practical guidance for users.展开更多
文摘In clinical trials, the primary efficacy endpoint often corresponds to a so-called "composite endpoint". Composite endpoints combine several events of interest within a single outcome variable. Thereby it is intended to enlarge the expected effect size and thereby increase the power of the study. However, composite endpoints also come along with serious challenges and problems. On the one hand, composite endpoints may lead to difficulties during the planning phase of a trial with respect to the sample size calculation, asthe expected clinical effect of an intervention on the composite endpoint depends on the effects on its single components and their correlations. This may lead to wrong assumptions on the sample size needed. Too optimistic assumptions on the expected effect may lead to an underpowered of the trial, whereas a too conservatively estimated effect results in an unnecessarily high sample size. On the other hand, the interpretation of composite endpoints may be difficult, as the observed effect of the composite does not necessarily reflect the effects of the single components. Therefore the demonstration of the clinical efficacy of a new intervention by exclusively evaluating the composite endpoint may be misleading. The present paper summarizes results and recommendations of the latest research addressing the above mentioned problems in the planning, analysis and interpretation of clinical trials with composite endpoints, thereby providing a practical guidance for users.