Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and c...Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.展开更多
提出采用LDRA(Liverpool Data Research Associates Ltd.)TESTBED测试工具辅助完成高可靠性的军用软件测试工作,并通过测试实例阐述了该工具在航天软件测试中的应用方案。结果证明,合理使用该工具,能够有效避免人为失误,提高软件测试的...提出采用LDRA(Liverpool Data Research Associates Ltd.)TESTBED测试工具辅助完成高可靠性的军用软件测试工作,并通过测试实例阐述了该工具在航天软件测试中的应用方案。结果证明,合理使用该工具,能够有效避免人为失误,提高软件测试的效率和信息采集的准确度。展开更多
基金Supported by National Nature Science Foundation of China(Grant No.51175461)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Program for Zhejiang Leading Team of S&T Innovation of China(Grant No.2009R50008)
文摘Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.