The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different ...The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different light intensities in various habitats affect eco-physiological characteristics of saplings and their natural regeneration.In this study,the light intensity in T.sinense habitats was simulated by artificial shading(L1:100%NS(natural sunlight)in the open;L2:50%NS in a forest gap or edge;L3:10%NS in understory)to investigate differences in morphology,leaf structure,physiology,and photosynthesis of 2-year-old sap-lings,and to analyze the mechanism of light intensity on sapling establishment.Significant differences were observed in morphology(including leaf area,and specific leaf area)under different light intensities.Compared to L1 and L3,chloroplast structure in L2 was intact.With increasing time,superoxide dismutase(SOD)and catalase(CAT)activities in L2 became gradually higher than under the other light intensities,while malondialdehyde(MDA)content was opposite.Shading decreased osmoregulation substance contents of leaves but increased chlorophyll.The results suggest that light intensities significantly affect the eco-physiological characteristics of T.sinense saplings and they would respond most favorably at intermediate levels of light by optimizing eco-physiological characteristics.Therefore,50%natural sunlight should be created to promote saplings establishment and population recovery of T.sinense during in situ conservation,including sowing mature seeds in forest edges or gaps and providing appropriate shade protection for seedlings and saplings in the open.展开更多
To analyze the degree and pattern of phenotypic variation in leaves of Tetracentron sinense Oliv from the perspective of genetic and environmental adaptation and thus contribute to effective evidence-based conservatio...To analyze the degree and pattern of phenotypic variation in leaves of Tetracentron sinense Oliv from the perspective of genetic and environmental adaptation and thus contribute to effective evidence-based conservation and management strategies for germplasm resources,we measured 17 morphological and epidermal micromorphological leaf traits from 24 natural populations of T.sinense.Nested analysis of variance,multiple comparison,principal component analysis(PCA),cluster analysis,and correlation analysis were used to explore phenotypic leaf variation among and within populations and potential correlations with geographic and environmental factors.There were significant differences in 17 leaf phenotypic traits among and within populations.The mean phenotypic differentiation coefficient of the 17 traits was 56.34%,and the variation among populations(36.4%)was greater than that within populations(27.2%).The coefficient of variation(CV)of each trait ranged from 4.6 to 23.8%,and the mean was 11.8%.Phenotypic variation of leaves was related to environmental factors such as average annual sunshine hours,average July temperature,and average annual rainfall.The variation changed along gradients of longitude,latitude,and altitude.The PCA clustered the 24 natural populations into four groups.Our study suggests that phenotypic variation in T.sinense occurred primarily among populations,with moderate levels of phenotypic differentiation among populations and low levels of phenotypic variation within populations.The plant’s poor adaptability to the environment is likely an important contributor to its endangerment.Accordingly,conservation strategies are proposed to protect and manage the natural populations of T.sinense.展开更多
The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anat...The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anatomical structure and FITR to measure the chemical components of the phloem and xylem of this tree. Radial variations in growth ring width and tracheid dimensions were also evaluated. The sieve tube, phloem parenchyma cell and sclereids clusters were the main cells in phloem, and the tracheid was the fundamental cell in xylem. An unusual tracheid type, fiber-tracheids or vessel-liked elements was visible. Wood rays nonstoried, uniseriate and multiseriate, including heterogeneous II, occasionally I, and usually 3-6 cells wide. The mean growth-ring width was 2.53 +/- 0.46 mm, and the percentage of late wood was over 60%. For radial variation, growth-ring width increased at an early growth stage, and reached the largest increment during years 11-15, then decreased. The maximum growth-ring width was 5.313 mm. During late growth (60-85 years), trees also maintained a high radial growth increment. Radial variation in the percentage of late wood was uniform, about 50-70%, throughout the growth years. Growth patterns in the length and width of early and late wood were similar as the trees aged. From the FTIR results, the chemical components differed significantly between xylem and phloem, hemicellulose in particular was higher in the xylem than in the phloem, where it was apparently absent. All of these suggest that the composition of phloem in T. sinense is very similar to that of hardwood, and it has higher growth ratio and uniform wood properties.展开更多
The wood powder of Tetracentron Sinense Olive was extracted with the benzene and alcohol (2:1 v/v). Then, the extractive is analyzed in Gc and Gc-Ms.Twenty chemical constitutions of the extractive are separated and id...The wood powder of Tetracentron Sinense Olive was extracted with the benzene and alcohol (2:1 v/v). Then, the extractive is analyzed in Gc and Gc-Ms.Twenty chemical constitutions of the extractive are separated and identified, which are as follows: calamenene; 2. 6,10-trimethyldihexyl; 3 -methoxybenzaldehyde; Methyl- 4- methox- ybenzoate; 4- methoxyphenylacetone; 3. 4- dimethoxybenzaldehyde;. 3. 4 -dimethoxyhypnone; methyl-3. 4-dimethoxybenzoate, Methyl-4-methoxyphenylacrylate,4,4-dimethoxycabonyl-diphenylethane; Methyl-3, 4,5 - erimethoxybenzoate; Methyl - 3. 4 -dimethoxyphenylacrylate; Methyl-myristate; Methyl - palmate, Methyl- zoomarate;Methyl-stearate; Methyl-oleate; Methyl-arachidate; Methyl-behenate, Dimethyl -azelate.展开更多
基金funded by the National Natural Science Foundation of China (No.32070371)the Innovation Team Funds of China West Normal University (No.KCXTD2022-4)+1 种基金the fund of Sichuan Meigu Dafegnding National Nature Reserve (No.mgdfd2022-13)Sichuan Micang Mountain National Nature Reserve (No.N5108212022000043)。
文摘The regeneration of Tetracentron sinense Oliv.is poor in the understory and in open areas due to the charac-teristics of natural regeneration of the species on forest edges and in gaps.It is unclear whether different light intensities in various habitats affect eco-physiological characteristics of saplings and their natural regeneration.In this study,the light intensity in T.sinense habitats was simulated by artificial shading(L1:100%NS(natural sunlight)in the open;L2:50%NS in a forest gap or edge;L3:10%NS in understory)to investigate differences in morphology,leaf structure,physiology,and photosynthesis of 2-year-old sap-lings,and to analyze the mechanism of light intensity on sapling establishment.Significant differences were observed in morphology(including leaf area,and specific leaf area)under different light intensities.Compared to L1 and L3,chloroplast structure in L2 was intact.With increasing time,superoxide dismutase(SOD)and catalase(CAT)activities in L2 became gradually higher than under the other light intensities,while malondialdehyde(MDA)content was opposite.Shading decreased osmoregulation substance contents of leaves but increased chlorophyll.The results suggest that light intensities significantly affect the eco-physiological characteristics of T.sinense saplings and they would respond most favorably at intermediate levels of light by optimizing eco-physiological characteristics.Therefore,50%natural sunlight should be created to promote saplings establishment and population recovery of T.sinense during in situ conservation,including sowing mature seeds in forest edges or gaps and providing appropriate shade protection for seedlings and saplings in the open.
基金funded by the Sichuan Science and Technology Program,Sichuan Province,China(No.2017JY0164)the Special Fund for the Fourth General Survey of Chinese Medicine Resources in China(No.2018PC001)+1 种基金Meritocracy Research Funds of China West Normal University(No.17YC325)the Fundamental Research Funds of China West Normal University(No.18B026).
文摘To analyze the degree and pattern of phenotypic variation in leaves of Tetracentron sinense Oliv from the perspective of genetic and environmental adaptation and thus contribute to effective evidence-based conservation and management strategies for germplasm resources,we measured 17 morphological and epidermal micromorphological leaf traits from 24 natural populations of T.sinense.Nested analysis of variance,multiple comparison,principal component analysis(PCA),cluster analysis,and correlation analysis were used to explore phenotypic leaf variation among and within populations and potential correlations with geographic and environmental factors.There were significant differences in 17 leaf phenotypic traits among and within populations.The mean phenotypic differentiation coefficient of the 17 traits was 56.34%,and the variation among populations(36.4%)was greater than that within populations(27.2%).The coefficient of variation(CV)of each trait ranged from 4.6 to 23.8%,and the mean was 11.8%.Phenotypic variation of leaves was related to environmental factors such as average annual sunshine hours,average July temperature,and average annual rainfall.The variation changed along gradients of longitude,latitude,and altitude.The PCA clustered the 24 natural populations into four groups.Our study suggests that phenotypic variation in T.sinense occurred primarily among populations,with moderate levels of phenotypic differentiation among populations and low levels of phenotypic variation within populations.The plant’s poor adaptability to the environment is likely an important contributor to its endangerment.Accordingly,conservation strategies are proposed to protect and manage the natural populations of T.sinense.
基金financially supported by the Youth Science and Technology Innovation Fund of NJFU(CXL2015018)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anatomical structure and FITR to measure the chemical components of the phloem and xylem of this tree. Radial variations in growth ring width and tracheid dimensions were also evaluated. The sieve tube, phloem parenchyma cell and sclereids clusters were the main cells in phloem, and the tracheid was the fundamental cell in xylem. An unusual tracheid type, fiber-tracheids or vessel-liked elements was visible. Wood rays nonstoried, uniseriate and multiseriate, including heterogeneous II, occasionally I, and usually 3-6 cells wide. The mean growth-ring width was 2.53 +/- 0.46 mm, and the percentage of late wood was over 60%. For radial variation, growth-ring width increased at an early growth stage, and reached the largest increment during years 11-15, then decreased. The maximum growth-ring width was 5.313 mm. During late growth (60-85 years), trees also maintained a high radial growth increment. Radial variation in the percentage of late wood was uniform, about 50-70%, throughout the growth years. Growth patterns in the length and width of early and late wood were similar as the trees aged. From the FTIR results, the chemical components differed significantly between xylem and phloem, hemicellulose in particular was higher in the xylem than in the phloem, where it was apparently absent. All of these suggest that the composition of phloem in T. sinense is very similar to that of hardwood, and it has higher growth ratio and uniform wood properties.
文摘The wood powder of Tetracentron Sinense Olive was extracted with the benzene and alcohol (2:1 v/v). Then, the extractive is analyzed in Gc and Gc-Ms.Twenty chemical constitutions of the extractive are separated and identified, which are as follows: calamenene; 2. 6,10-trimethyldihexyl; 3 -methoxybenzaldehyde; Methyl- 4- methox- ybenzoate; 4- methoxyphenylacetone; 3. 4- dimethoxybenzaldehyde;. 3. 4 -dimethoxyhypnone; methyl-3. 4-dimethoxybenzoate, Methyl-4-methoxyphenylacrylate,4,4-dimethoxycabonyl-diphenylethane; Methyl-3, 4,5 - erimethoxybenzoate; Methyl - 3. 4 -dimethoxyphenylacrylate; Methyl-myristate; Methyl - palmate, Methyl- zoomarate;Methyl-stearate; Methyl-oleate; Methyl-arachidate; Methyl-behenate, Dimethyl -azelate.