DNA replication elongation is tightly controlled by histone-modifying enzymes.Our previous studies showed that the histone methytransferase TXRl(Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 mo...DNA replication elongation is tightly controlled by histone-modifying enzymes.Our previous studies showed that the histone methytransferase TXRl(Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 monomethylation and affects DNA replication elongation in Tetrahymena thermophila.In this study,we investigated whether TXRl has a substrate preference to the canonical H3 over the replacement variant H3.3.We demonstrated by histone mutagenesis that K27 Q mutation in H3.3further aggravated the replication stress phenotype of K27 Q mutation in canonical H3,supporting H3.3 as a physiologically relevant substrate of TXRl.This result is in apparent contrast to the strong preference for canonical H3 recently reported in Arabidopsis homologues ATXR5 and ATXR6,and further corroborates the role of TXRl in DNA replication.展开更多
基金supported by the Natural Science Foundation of China (31470064,31522051 to Shan Gao)the National Institutes of Health(R01GM087343 to Yifan Liu)+1 种基金AoShan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology(2015ASTP)China and a research grant by Qingdao government(15-12-1-1-jch)
文摘DNA replication elongation is tightly controlled by histone-modifying enzymes.Our previous studies showed that the histone methytransferase TXRl(Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 monomethylation and affects DNA replication elongation in Tetrahymena thermophila.In this study,we investigated whether TXRl has a substrate preference to the canonical H3 over the replacement variant H3.3.We demonstrated by histone mutagenesis that K27 Q mutation in H3.3further aggravated the replication stress phenotype of K27 Q mutation in canonical H3,supporting H3.3 as a physiologically relevant substrate of TXRl.This result is in apparent contrast to the strong preference for canonical H3 recently reported in Arabidopsis homologues ATXR5 and ATXR6,and further corroborates the role of TXRl in DNA replication.