We consider tilings of deficient rectangles by the set T4 of ribbon L-tetro-minoes. A tiling exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an od...We consider tilings of deficient rectangles by the set T4 of ribbon L-tetro-minoes. A tiling exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are paired and each pair tiles a 2×4 rectangle. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The crack divides the square in two parts of equal area. The number of tilings of a (4m+1)×(4m+1) deficient square by T4? is equal to the number of tilings by dominoes of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T4? is twice the number of tilings by dominoes of a (2m+1)×(2m+1)?deficient square, with the missing cell placed on the main diagonal. In both cases the counting is realized by an explicit function which is a bijection in the first case and a double cover in the second. If an extra 2×2 tile is added to T4 , we call the new tile set?T+<sub style="margin-left:-6px;">4. A tiling of a deficient rectangle by T+4 exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are either paired tetrominoes and each pair tiles a 2×4 rectangle, or are 2×2 squares. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The number of tilings of a (4m+1)×(4m+1) deficient square by T+4 is greater than the number of tilings by dominoes and monomers of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T+4 is greater than twice the number of tilings by dominoes and monomers of a (2m+1)×(2m+1) deficient square, with the missing cell placed on the main diagonal. We also consider tilings by T4? and T+4 of other significant deficient regions. In particular we show that a deficient first quadrant, a deficient half strip, a deficient strip or a deficient bent strip cannot be tiled by T+4. Therefore T4? and T+4 give examples of tile sets that tile deficient rectangles but do not tile any deficient first quadrant, any deficient half strip, any deficient bent strip or any deficient strip.展开更多
Visual cryptographic scheme is specially designed for secret image sharing in the form of shadow images.The basic idea of visual cryptography is to construct two or more secret shares from the original image in the fo...Visual cryptographic scheme is specially designed for secret image sharing in the form of shadow images.The basic idea of visual cryptography is to construct two or more secret shares from the original image in the form of chaotic image.In this paper,a novel secret image communication scheme based on visual cryptography and Tetrolet tiling patterns is proposed.The proposed image communication scheme will break the secret image into more shadow images based on the Tetrolet tiling patterns.The secret image is divided into 4×4 blocks of tetrominoes and employs the concept of visual cryptography to hide the secret image.The main feature of the proposed scheme is the selection of random blocks to apply the tetrolet tilling patterns from the fundamental tetrolet pattern board.Single procedure is used to perform both tetrolet transform and the scheme of visual cryptography.Finally,the experimental results showcase the proposed scheme is an extraordinary approach to transfer the secret image and reconstruct the secret image with high visual quality in the receiver end.展开更多
文摘We consider tilings of deficient rectangles by the set T4 of ribbon L-tetro-minoes. A tiling exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are paired and each pair tiles a 2×4 rectangle. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The crack divides the square in two parts of equal area. The number of tilings of a (4m+1)×(4m+1) deficient square by T4? is equal to the number of tilings by dominoes of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T4? is twice the number of tilings by dominoes of a (2m+1)×(2m+1)?deficient square, with the missing cell placed on the main diagonal. In both cases the counting is realized by an explicit function which is a bijection in the first case and a double cover in the second. If an extra 2×2 tile is added to T4 , we call the new tile set?T+<sub style="margin-left:-6px;">4. A tiling of a deficient rectangle by T+4 exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are either paired tetrominoes and each pair tiles a 2×4 rectangle, or are 2×2 squares. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The number of tilings of a (4m+1)×(4m+1) deficient square by T+4 is greater than the number of tilings by dominoes and monomers of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T+4 is greater than twice the number of tilings by dominoes and monomers of a (2m+1)×(2m+1) deficient square, with the missing cell placed on the main diagonal. We also consider tilings by T4? and T+4 of other significant deficient regions. In particular we show that a deficient first quadrant, a deficient half strip, a deficient strip or a deficient bent strip cannot be tiled by T+4. Therefore T4? and T+4 give examples of tile sets that tile deficient rectangles but do not tile any deficient first quadrant, any deficient half strip, any deficient bent strip or any deficient strip.
文摘Visual cryptographic scheme is specially designed for secret image sharing in the form of shadow images.The basic idea of visual cryptography is to construct two or more secret shares from the original image in the form of chaotic image.In this paper,a novel secret image communication scheme based on visual cryptography and Tetrolet tiling patterns is proposed.The proposed image communication scheme will break the secret image into more shadow images based on the Tetrolet tiling patterns.The secret image is divided into 4×4 blocks of tetrominoes and employs the concept of visual cryptography to hide the secret image.The main feature of the proposed scheme is the selection of random blocks to apply the tetrolet tilling patterns from the fundamental tetrolet pattern board.Single procedure is used to perform both tetrolet transform and the scheme of visual cryptography.Finally,the experimental results showcase the proposed scheme is an extraordinary approach to transfer the secret image and reconstruct the secret image with high visual quality in the receiver end.