This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co...This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users.展开更多
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new...In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views a...With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper.展开更多
ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN t...ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN technique,the DDNN model is utilized to generate the summary.This study exploits the Chameleon Swarm Optimization(CSO)algorithm to fine-tune the hyperparameters relevant to the DDNN model since it considerably affects the summarization efficiency.This phase shows the novelty of the current study.To validate the enhanced summarization performance of the proposed AATS-HTDDNN model,a comprehensive experimental analysis was conducted.The comparison study outcomes confirmed the better performance of the AATS-HTDDNN model over other approaches.展开更多
Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is...Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method.展开更多
To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combine...To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority.展开更多
With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public securit...With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public security work,public opinion news classification is an important topic.Effective and accurate classification of public opinion news is a necessary prerequisite for relevant departments to grasp the situation of public opinion and control the trend of public opinion in time.This paper introduces a combinedconvolutional neural network text classification model based on word2vec and improved TF-IDF:firstly,the word vector is trained through word2vec model,then the weight of each word is calculated by using the improved TFIDF algorithm based on class frequency variance,and the word vector and weight are combined to construct the text vector representation.Finally,the combined-convolutional neural network is used to train and test the Thucnews data set.The results show that the classification effect of this model is better than the traditional Text-RNN model,the traditional Text-CNN model and word2vec-CNN model.The test accuracy is 97.56%,the accuracy rate is 97%,the recall rate is 97%,and the F1-score is 97%.展开更多
Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure i...Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure in High Efficiency Video Coding(H.265/HEVC).More complicated coding unit(CU)partitioning processes in H.266/VVC significantly improve video compression efficiency,but greatly increase the computational complexity compared.The ultra-high encoding complexity has obstructed its real-time applications.In order to solve this problem,a CU partition algorithm using convolutional neural network(CNN)is proposed in this paper to speed up the H.266/VVC CU partition process.Firstly,64×64 CU is divided into smooth texture CU,mildly complex texture CU and complex texture CU according to the CU texture characteristics.Second,CU texture complexity classification convolutional neural network(CUTCC-CNN)is proposed to classify CUs.Finally,according to the classification results,the encoder is guided to skip different RDO search process.And optimal CU partition results will be determined.Experimental results show that the proposed method reduces the average coding time by 32.2%with only 0.55%BD-BR loss compared with VTM 10.2.展开更多
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b...Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)h...Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism.展开更多
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm...In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.展开更多
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFA0608000)the National Natural Science Foundation of China (Grant No. 42030605)the High-Performance Computing of Nanjing University of Information Science&Technology for their support of this work。
文摘This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users.
基金the National Natural Science Foundation of China under Grant No.52274159 received by E.Hu,https://www.nsfc.gov.cn/Grant No.52374165 received by E.Hu,https://www.nsfc.gov.cn/the China National Coal Group Key Technology Project Grant No.(20221CY001)received by Z.Guan,and E.Hu,https://www.chinacoal.com/.
文摘In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
文摘With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4210118DSR33The authors are thankful to the Deanship of ScientificResearch atNajranUniversity for funding thiswork under theResearch Groups Funding Program Grant Code(NU/RG/SERC/11/7).
文摘ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN technique,the DDNN model is utilized to generate the summary.This study exploits the Chameleon Swarm Optimization(CSO)algorithm to fine-tune the hyperparameters relevant to the DDNN model since it considerably affects the summarization efficiency.This phase shows the novelty of the current study.To validate the enhanced summarization performance of the proposed AATS-HTDDNN model,a comprehensive experimental analysis was conducted.The comparison study outcomes confirmed the better performance of the AATS-HTDDNN model over other approaches.
文摘Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method.
文摘To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority.
基金This work was supported by Ministry of public security technology research program[Grant No.2020JSYJC22ok]Fundamental Research Funds for the Central Universities(No.2021JKF215)+1 种基金Open Research Fund of the Public Security Behavioral Science Laboratory,People’s Public Security University of China(2020SYS03)Police and people build/share a smart community(PJ13-201912-0525).
文摘With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public security work,public opinion news classification is an important topic.Effective and accurate classification of public opinion news is a necessary prerequisite for relevant departments to grasp the situation of public opinion and control the trend of public opinion in time.This paper introduces a combinedconvolutional neural network text classification model based on word2vec and improved TF-IDF:firstly,the word vector is trained through word2vec model,then the weight of each word is calculated by using the improved TFIDF algorithm based on class frequency variance,and the word vector and weight are combined to construct the text vector representation.Finally,the combined-convolutional neural network is used to train and test the Thucnews data set.The results show that the classification effect of this model is better than the traditional Text-RNN model,the traditional Text-CNN model and word2vec-CNN model.The test accuracy is 97.56%,the accuracy rate is 97%,the recall rate is 97%,and the F1-score is 97%.
基金This paper is supported by the following funds:The National Key Research and Development Program of China(2018YFF01010100)Basic Research Program of Qinghai Province under Grants No.2021-ZJ-704,The Beijing Natural Science Foundation(4212001)Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure in High Efficiency Video Coding(H.265/HEVC).More complicated coding unit(CU)partitioning processes in H.266/VVC significantly improve video compression efficiency,but greatly increase the computational complexity compared.The ultra-high encoding complexity has obstructed its real-time applications.In order to solve this problem,a CU partition algorithm using convolutional neural network(CNN)is proposed in this paper to speed up the H.266/VVC CU partition process.Firstly,64×64 CU is divided into smooth texture CU,mildly complex texture CU and complex texture CU according to the CU texture characteristics.Second,CU texture complexity classification convolutional neural network(CUTCC-CNN)is proposed to classify CUs.Finally,according to the classification results,the encoder is guided to skip different RDO search process.And optimal CU partition results will be determined.Experimental results show that the proposed method reduces the average coding time by 32.2%with only 0.55%BD-BR loss compared with VTM 10.2.
基金the National Natural Science Foundation of China(62003298,62163036)the Major Project of Science and Technology of Yunnan Province(202202AD080005,202202AH080009)the Yunnan University Professional Degree Graduate Practice Innovation Fund Project(ZC-22222770)。
文摘Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金Prince Sultan University for funding this publication’s Article Process Charges(APC).
文摘Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism.
基金the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.23NSFSCC0116 and 2022NSFSC12333)the Nuclear Energy Development Project(No.[2021]-88).
文摘In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.