期刊文献+
共找到4,013篇文章
< 1 2 201 >
每页显示 20 50 100
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group
1
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model convolutional neural network(cnn) Finite Element Method(FEM)
下载PDF
基于BERT和TextCNN的智能制造成熟度评估方法 被引量:1
2
作者 张淦 袁堂晓 +1 位作者 汪惠芬 柳林燕 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期852-863,共12页
随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,... 随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,设计了一种新的评估流程,采用文本处理算法对整个评估过程进行了重构,通过利用国标文件中智能制造成熟度评估标准,将其作为训练集,采用基于预训练语言模型与文本神经网络(BERT+TextCNN)相结合的智能评估算法代替人工评估。在真实的企业智能制造数据集上的验证表明,当BERT+TextCNN评估模型在卷积核为[2,3,4]、迭代次数为6次、学习率为3e-5时,对智能制造成熟度进行评估,准确率达到85.32%。这表明所设计的评估方法能够较准确地帮助企业完成智能制造成熟度自评估,有助于企业了解自身智能制造能力水平,制定正确的发展方向。 展开更多
关键词 智能制造成熟度模型 BERT预训练语言模型 文本卷积神经网络 评估过程重构
下载PDF
基于改进分层注意网络和TextCNN联合建模的暴力犯罪分级算法
3
作者 张家伟 高冠东 +1 位作者 肖珂 宋胜尊 《计算机应用》 CSCD 北大核心 2024年第2期403-410,共8页
为了科学、智能地对服刑人员的暴力倾向分级,将自然语言处理(NLP)中的文本分类方法引入犯罪心理学领域,提出一种基于改进分层注意网络(HAN)与TextCNN(Text Convolutional Neural Network)两通道联合建模的犯罪语义卷积分层注意网络(CCHA... 为了科学、智能地对服刑人员的暴力倾向分级,将自然语言处理(NLP)中的文本分类方法引入犯罪心理学领域,提出一种基于改进分层注意网络(HAN)与TextCNN(Text Convolutional Neural Network)两通道联合建模的犯罪语义卷积分层注意网络(CCHA-Net),通过分别挖掘犯罪事实与服刑人员基本情况的语义信息,完成暴力犯罪气质分级。首先,采用Focal Loss同时替代两通道中的Cross-Entropy函数,优化样本数量不均衡问题。其次,在两通道输入层中,同时引入位置编码,改进对位置信息的感知能力;改进HAN通道,采用最大池化构建显著向量。最后,输出层都采用全局平均池化替代全连接方法,以避免过拟合。实验结果表明,与AC-BiLSTM(Attention-based Bidirectional Long Short-Term Memory with Convolution layer)、支持向量机(SVM)等17种相关基线模型相比,CCHA-Net各项指标均最优,微平均F1(Micro_F1)为99.57%,宏平均和微平均下的曲线下面积(AUC)分别为99.45%和99.89%,相较于次优的AC-BiLSTM提高了4.08、5.59和0.74个百分点,验证了CCHA-Net能有效胜任暴力犯罪气质分级任务。 展开更多
关键词 深度学习 文本分类 卷积神经网络 分层注意网络 暴力犯罪分级 气质类型
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:1
4
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity convolutional neural network(cnn) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
5
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(cnns)
下载PDF
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
6
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 COAL coal gangue convolutional neural network cnn object classification volume estimation separation system
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
7
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional neural networks (cnn) Seismic Fault Identification U-Net 3D Model Geological Exploration
下载PDF
基于PU-Learning和TextCNN的文献推荐方法研究
8
作者 刁羽 薛红 《新世纪图书馆》 2024年第2期66-73,共8页
论文旨在将现有的机器学习研究成果运用到图书馆文献推荐的实际工作中,以充分发挥电子资源的作用。鉴于难以获得用户对文献资源的显式评价,因此将用户浏览、下载的文献视为正类文献,将用户未交互的文献视为未标记文献,通过卷积网络文本... 论文旨在将现有的机器学习研究成果运用到图书馆文献推荐的实际工作中,以充分发挥电子资源的作用。鉴于难以获得用户对文献资源的显式评价,因此将用户浏览、下载的文献视为正类文献,将用户未交互的文献视为未标记文献,通过卷积网络文本分类模型并结合PU-Learning算法对待推荐文献的推荐概率进行预测。实践证明该方法具有较高的精准性,能够在图书馆文献推荐实际应用中发挥作用。 展开更多
关键词 卷积神网络 电子文献推荐 PU-Learning 文本分类
下载PDF
Text Feature Extraction and Classification Based on Convolutional Neural Network(CNN)
9
作者 Taohong Zhang Cunfang Li +3 位作者 Nuan Cao Rui Ma ShaoHua Zhang Nan Ma 《国际计算机前沿大会会议论文集》 2017年第1期119-121,共3页
With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views a... With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper. 展开更多
关键词 convolutional neural network(cnn) text FEATURE EXTRACTION CLASS operation
下载PDF
Abstractive Arabic Text Summarization Using Hyperparameter Tuned Denoising Deep Neural Network
10
作者 Ibrahim M.Alwayle Hala J.Alshahrani +5 位作者 Saud S.Alotaibi Khaled M.Alalayah Amira Sayed A.Aziz Khadija M.Alaidarous Ibrahim Abdulrab Ahmed Manar Ahmed Hamza 《Intelligent Automation & Soft Computing》 2023年第11期153-168,共16页
ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN t... ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN technique,the DDNN model is utilized to generate the summary.This study exploits the Chameleon Swarm Optimization(CSO)algorithm to fine-tune the hyperparameters relevant to the DDNN model since it considerably affects the summarization efficiency.This phase shows the novelty of the current study.To validate the enhanced summarization performance of the proposed AATS-HTDDNN model,a comprehensive experimental analysis was conducted.The comparison study outcomes confirmed the better performance of the AATS-HTDDNN model over other approaches. 展开更多
关键词 text summarization deep learning denoising deep neural networks hyperparameter tuning Arabic language
下载PDF
中文科技政策文本分类:增强的TextCNN视角 被引量:5
11
作者 李牧南 王良 赖华鹏 《科技管理研究》 北大核心 2023年第2期160-166,共7页
近年尽管针对中文本文分类的研究成果不少,但基于深度学习对中文政策等长文本进行自动分类的研究还不多见。为此,借鉴和拓展传统的数据增强方法,提出集成新时代人民日报分词语料库(NEPD)、简单数据增强(EDA)算法、word2vec和文本卷积神... 近年尽管针对中文本文分类的研究成果不少,但基于深度学习对中文政策等长文本进行自动分类的研究还不多见。为此,借鉴和拓展传统的数据增强方法,提出集成新时代人民日报分词语料库(NEPD)、简单数据增强(EDA)算法、word2vec和文本卷积神经网络(TextCNN)的NEWT新型计算框架;实证部分,基于中国地方政府发布的科技政策文本进行算法校验。实验结果显示,在取词长度分别为500、750和1000词的情况下,应用NEWT算法对中文科技政策文本进行分类的效果优于RCNN、Bi-LSTM和CapsNet等传统深度学习模型,F1值的平均提升比例超过13%;同时,NEWT在较短取词长度下能够实现全文输入的近似效果,可以部分改善传统深度学习模型在中文长文本自动分类任务中的计算效率。 展开更多
关键词 NEWT 深度学习 数据增强 卷积神经网络 政策文本分类 中文长文本
下载PDF
Investigation on the Chinese Text Sentiment Analysis Based on Convolutional Neural Networks in Deep Learning 被引量:11
12
作者 Feng Xu Xuefen Zhang +1 位作者 Zhanhong Xin Alan Yang 《Computers, Materials & Continua》 SCIE EI 2019年第3期697-709,共13页
Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is... Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method. 展开更多
关键词 convolutional neural network(cnn) deep learning learning rate NORMALIZATION sentiment analysis.
下载PDF
Term-Based Pooling in Convolutional Neural Networks for Text Classification 被引量:2
13
作者 Shuifei Zeng Yan Ma +1 位作者 Xiaoyan Zhang Xiaofeng Du 《China Communications》 SCIE CSCD 2020年第4期109-124,共16页
To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combine... To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority. 展开更多
关键词 convolutional neural networks term-based pooling text Classification
下载PDF
Chinese News Text Classification Based on Convolutional Neural Network 被引量:1
14
作者 Hanxu Wang Xin Li 《Journal on Big Data》 2022年第1期41-60,共20页
With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public securit... With the explosive growth of Internet text information,the task of text classification is more important.As a part of text classification,Chinese news text classification also plays an important role.In public security work,public opinion news classification is an important topic.Effective and accurate classification of public opinion news is a necessary prerequisite for relevant departments to grasp the situation of public opinion and control the trend of public opinion in time.This paper introduces a combinedconvolutional neural network text classification model based on word2vec and improved TF-IDF:firstly,the word vector is trained through word2vec model,then the weight of each word is calculated by using the improved TFIDF algorithm based on class frequency variance,and the word vector and weight are combined to construct the text vector representation.Finally,the combined-convolutional neural network is used to train and test the Thucnews data set.The results show that the classification effect of this model is better than the traditional Text-RNN model,the traditional Text-CNN model and word2vec-CNN model.The test accuracy is 97.56%,the accuracy rate is 97%,the recall rate is 97%,and the F1-score is 97%. 展开更多
关键词 Chinese news text classification word2vec model improved TF-IDF combined-convolutional neural network public opinion news
下载PDF
Fast CU Partition for VVC Using Texture Complexity Classification Convolutional Neural Network
15
作者 Yue Zhang Pengyu Liu +3 位作者 Xiaowei Jia Shanji Chen Tianyu Liu Chang Liu 《Computers, Materials & Continua》 SCIE EI 2022年第11期3545-3556,共12页
Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure i... Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure in High Efficiency Video Coding(H.265/HEVC).More complicated coding unit(CU)partitioning processes in H.266/VVC significantly improve video compression efficiency,but greatly increase the computational complexity compared.The ultra-high encoding complexity has obstructed its real-time applications.In order to solve this problem,a CU partition algorithm using convolutional neural network(CNN)is proposed in this paper to speed up the H.266/VVC CU partition process.Firstly,64×64 CU is divided into smooth texture CU,mildly complex texture CU and complex texture CU according to the CU texture characteristics.Second,CU texture complexity classification convolutional neural network(CUTCC-CNN)is proposed to classify CUs.Finally,according to the classification results,the encoder is guided to skip different RDO search process.And optimal CU partition results will be determined.Experimental results show that the proposed method reduces the average coding time by 32.2%with only 0.55%BD-BR loss compared with VTM 10.2. 展开更多
关键词 Versatile video coding(VVC) coding unit partition convolutional neural network(cnn)
下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别
16
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
17
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 convolutional neural networks(cnns) deep learning image processing oscillation detection process industries
下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:2
18
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(cnn)
下载PDF
Hyper-Tuned Convolutional Neural Networks for Authorship Verification in Digital Forensic Investigations 被引量:1
19
作者 Asif Rahim Yanru Zhong +2 位作者 Tariq Ahmad Sadique Ahmad Mohammed A.ElAffendi 《Computers, Materials & Continua》 SCIE EI 2023年第8期1947-1976,共30页
Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)h... Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism. 展开更多
关键词 convolutional neural network(cnn) hyper-tuning authorship verification digital forensics
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
20
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) convolutional neural network(cnn)
下载PDF
上一页 1 2 201 下一页 到第
使用帮助 返回顶部