期刊文献+
共找到657篇文章
< 1 2 33 >
每页显示 20 50 100
Text Sentiment Analysis Based on Multi-Layer Bi-Directional LSTM with a Trapezoidal Structure
1
作者 Zhengfang He Cristina E.Dumdumaya Ivy Kim D.Machica 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期639-654,共16页
Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,m... Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model. 展开更多
关键词 text sentiment Bi-directional LSTM Trapezoidal structure
下载PDF
Text Sentiment Analysis Using Frequency-Based Vigorous Features 被引量:2
2
作者 Abdul Razzaq Muhammad Asim +4 位作者 Zulqrnain Ali Salman Qadri Imran Mumtaz Dost Muhammad Khan Qasim Niaz 《China Communications》 SCIE CSCD 2019年第12期145-153,共9页
Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get informat... Sentiment Analysis, an un-abating research area in text mining, requires a computational method for extracting useful information from text. In recent days, social media has become a really rich source to get information about the behavioral state of people(opinion) through reviews and comments. Numerous techniques have been aimed to analyze the sentiment of the text, however, they were unable to come up to the complexity of the sentiments. The complexity requires novel approach for deep analysis of sentiments for more accurate prediction. This research presents a three-step Sentiment Analysis and Prediction(SAP) solution of Text Trend through K-Nearest Neighbor(KNN). At first, sentences are transformed into tokens and stop words are removed. Secondly, polarity of the sentence, paragraph and text is calculated through contributing weighted words, intensity clauses and sentiment shifters. The resulting features extracted in this step played significant role to improve the results. Finally, the trend of the input text has been predicted using KNN classifier based on extracted features. The training and testing of the model has been performed on publically available datasets of twitter and movie reviews. Experiments results illustrated the satisfactory improvement as compared to existing solutions. In addition, GUI(Hello World) based text analysis framework has been designed to perform the text analytics. 展开更多
关键词 text mining sentiment analysis sentiment shifters KNN
下载PDF
English Text Sentiment Analysis Based on Convolutional Neural Network and U-network
3
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第2期81-90,共10页
English text sentiment orientation analysis is a fundamental problem in the field of natural language processing.The traditional word segmentation method can produce ambiguity when dealing with English text.Therefore,... English text sentiment orientation analysis is a fundamental problem in the field of natural language processing.The traditional word segmentation method can produce ambiguity when dealing with English text.Therefore,this paper proposes a novel English text sentiment analysis based on convolutional neural network and U-network.The proposed method uses a parallel convolution layer to learn the associations and combinations between word vectors.The results are then input into the hierarchical attention network whose basic unit is U-network to determine the affective tendency.The experimental results show that the accuracy of bias classification on the English review dataset reaches 93.45%.Compared with many existing sentiment analysis models,it has more accuracy. 展开更多
关键词 English text sentiment Convolutional neural network U-network
原文传递
融合Text-CNN与注意力机制的特产小吃评论情感分析 被引量:2
4
作者 韦斯羽 朱广丽 谈光璞 《阜阳师范大学学报(自然科学版)》 2023年第1期57-63,共7页
面向特产小吃评论数据的情感分析,旨在挖掘消费者对不同特产小吃的观点和看法,从而提高特产小吃产品的销量。针对当前特产小吃评论情感分析准确率较低的问题,本文构建了特产小吃评论数据集,并提出一种融合Text-CNN(Convolutional Naural... 面向特产小吃评论数据的情感分析,旨在挖掘消费者对不同特产小吃的观点和看法,从而提高特产小吃产品的销量。针对当前特产小吃评论情感分析准确率较低的问题,本文构建了特产小吃评论数据集,并提出一种融合Text-CNN(Convolutional Naural Networks)与注意力机制的模型对其进行情感分析。首先,通过Text-CNN对文本局部特征信息进行提取;然后,将局部特征引入注意力机制单元中,完成对文本信息的特征提取。最后在Softmax分类器中输入提取的特征,进行情感分类。实验结果表明,提出的模型与Text-CNN、Bi-RNN+Attention、Char-CNN、LEAM四种模型进行对比,准确率有所提升。 展开更多
关键词 情感分析 特产小吃 text-CNN 注意力机制
下载PDF
基于社交媒体数据的城市洪涝灾害信息智能提取与分析
5
作者 康玲 温云亮 +4 位作者 周丽伟 郭金垒 叶金旺 陈锦帅 邹强 《中国农村水利水电》 北大核心 2024年第5期155-160,共6页
近年来,由于气候变化导致极端降雨引起的城市内涝灾害事件频发,给我国城市水安全和可持续发展带来威胁,准确掌握受灾区域的舆论主体和公众情绪,对提高应急管理部门内涝灾害的态势感知能力具有重要意义。在当今智能网络时代,人们通过社... 近年来,由于气候变化导致极端降雨引起的城市内涝灾害事件频发,给我国城市水安全和可持续发展带来威胁,准确掌握受灾区域的舆论主体和公众情绪,对提高应急管理部门内涝灾害的态势感知能力具有重要意义。在当今智能网络时代,人们通过社交媒体反映问题和建议的诉求日益凸显,社交媒体已逐渐成为反映民众情感和社会舆情的主要载体,为获取自然灾害信息提供了新的途径。如何从社交媒体中快速提取城市洪涝灾害信息,并对自然灾害信息进行主题分类和情感分析,准确掌握区域灾情的主题类别和民众舆论倾向,是目前亟待解决的关键技术问题。以新浪微博为例,阐述了洪涝灾害数据的获取与预处理方法,构建了基于FastText的城市洪涝灾害信息主题分类和情感分析模型,以准确掌握受灾区域的主题类别和舆论导向。以2021年郑州“7.20”特大暴雨期间洪涝灾害为例的研究结果表明,本文方法实现了对社交媒体中城市洪涝灾害数据的智能提取与分析,主题分类模型对预设八种类别数据的分类预测F1值达到0.80以上,且情感分析模型基本能够准确预测情感标记为“负面”的数据,这表明本文构建的基于FastText的城市洪涝灾害信息主题分类和情感分析模型能够满足支撑城市应急管理部门动态掌握洪涝灾害发展态势及公众情绪的需求,对防涝减灾调度、安抚民众情绪和实时定点救援等工作具有重要的指导意义。 展开更多
关键词 城市内涝 社交媒体 Fasttext 文本分类 情感分析
下载PDF
企业ESG与资本市场表现——来自股票流动性的证据 被引量:1
6
作者 徐晟 哈斯木其尔 +1 位作者 梁富友 沈熙峰 《科学决策》 2024年第4期42-60,共19页
在经济社会发展绿色化、低碳化态势下,ESG理念在资本市场中的地位日益凸显。文章基于2015—2021年我国A股上市公司数据,研究ESG表现对企业股票流动性的影响。研究发现,ESG表现显著提升了企业股票流动性,该效应在国有企业、大规模企业以... 在经济社会发展绿色化、低碳化态势下,ESG理念在资本市场中的地位日益凸显。文章基于2015—2021年我国A股上市公司数据,研究ESG表现对企业股票流动性的影响。研究发现,ESG表现显著提升了企业股票流动性,该效应在国有企业、大规模企业以及市场化程度较高的地区企业中更显著。机制分析表明,企业ESG有利于提升投资者情绪和信息透明度,进而促进股票流动性。进一步研究发现,企业良好ESG表现所带来的股票流动性显著提升了企业价值和企业创新。发掘企业ESG在金融市场的作用效果,为活跃资本市场提供新的经验证据。 展开更多
关键词 ESG 股票流动性 投资者情绪 信息透明度 文本分析
下载PDF
基于BERT和超图对偶注意力网络的文本情感分析
7
作者 胥桂仙 刘兰寅 +1 位作者 王家诚 陈哲 《计算机应用研究》 CSCD 北大核心 2024年第3期786-793,共8页
针对网络短文本存在大量的噪声和缺乏上下文信息的问题,提出一种基于BERT和超图对偶注意力机制的文本情感分析模型。首先利用BERT预训练模型强大的表征学习能力,对情感文本进行动态特征提取;同时挖掘文本的上下文顺序信息、主题信息和... 针对网络短文本存在大量的噪声和缺乏上下文信息的问题,提出一种基于BERT和超图对偶注意力机制的文本情感分析模型。首先利用BERT预训练模型强大的表征学习能力,对情感文本进行动态特征提取;同时挖掘文本的上下文顺序信息、主题信息和语义依存信息将其建模成超图,通过对偶图注意力机制来对以上关联信息进行聚合;最终将BERT和超图对偶注意力网络两个模块提取出的特征进行拼接,经过softmax层得到对文本情感倾向的预测结果。该模型在电商评论二分类数据集和微博文本六分类数据集上的准确率分别达到95.49%和79.83%,相较于基准模型分别提高2.27%~3.45%和6.97%~11.69%;同时还设计了消融实验验证模型各部分对分类结果的增益。实验结果表明,该模型能够显著提高针对中文网络短文本情感分析的准确率。 展开更多
关键词 文本情感分析 超图 图分类 注意力机制
下载PDF
基于KMeans-EDA算法的非均衡评论情感分类研究
8
作者 郭卡 《山东理工大学学报(自然科学版)》 CAS 2024年第4期45-52,共8页
学习者真实的评价是反映在线课程优缺点的重要指标,快速准确地获得其反馈,对于在线课程的优化极为重要。为深入挖掘学习者的在线学习行为,继而为在线教学提供有效的数据基础,爬取了中国大学MOOC平台的课程评论文本,基于Bert模型的结构,... 学习者真实的评价是反映在线课程优缺点的重要指标,快速准确地获得其反馈,对于在线课程的优化极为重要。为深入挖掘学习者的在线学习行为,继而为在线教学提供有效的数据基础,爬取了中国大学MOOC平台的课程评论文本,基于Bert模型的结构,建立了基于自注意力文本表征的机器学习模型,能够实现对评论文本的精确情感分类,从而获得学习者内隐的情感状态。由于爬取数据中负面评论较少,故设计了KMeans-EDA自适应均衡采样训练策略,解决了训练过程中模型偏向多数类的问题,提升了模型对负面评论的识别能力。实验结果表明,该策略可以将模型对评论文本的F1-score值从0.6902提升到0.7399。 展开更多
关键词 在线课程 评论文本 文本情感分类 预训练特征表示 非均衡训练
下载PDF
融资者回复对众筹项目融资绩效的影响:符号的调节作用
9
作者 王伟 赵勇勇 王洪伟 《南开管理评论》 北大核心 2024年第5期18-29,共12页
众筹融资者对在线评论的回复同时使用了符号和文字,二者共同决定投资者决策。本文专注于符号和文本情感对众筹项目融资绩效的影响及符号的调节作用,以解释水平理论中的心理距离为理论基础,从心理层面阐述融资者回复的说服效应。采用爬... 众筹融资者对在线评论的回复同时使用了符号和文字,二者共同决定投资者决策。本文专注于符号和文本情感对众筹项目融资绩效的影响及符号的调节作用,以解释水平理论中的心理距离为理论基础,从心理层面阐述融资者回复的说服效应。采用爬虫抓取摩点众筹网站的3644个项目及其148833条融资者回复为研究语料,并对数据进行清洗、预处理及语料规范化。采用自然语言处理技术对回复文本和符号进行文本挖掘。以基于语料标注的朴素贝叶斯分类模型进行文本情感标注并量化标点符号(感叹号和问号)与表情符号的使用,构建计量模型、测量文本情感和符号的影响。就回复情感而言,中性情感比非中性情感更有利于缩短心理距离,提高融资绩效;非中性情感中,消极情感在引起共情方面更具优势。就符号内容而言,标点符号对融资绩效具有正面影响,且负向调节回复情感的效用;表情符号则对融资绩效具有消极影响,并在回复情感和融资绩效之间起到正向调节作用。本文证实了标点符号的正面效用及表情符号的负面效用;同时证实了符号对文本情感的调节作用。理论上解释了文本对用户的说服效用,从文本情感和符号使用角度完善了解释水平理论,为文本说服机制和心理距离效应提供了理论解释;实践上为众筹融资者有效回复提供了参考。 展开更多
关键词 符号内容 回复情感 心理距离 众筹 文本挖掘
下载PDF
基于文本挖掘的跑鞋用户评价及情感分析
10
作者 罗向东 强威 +1 位作者 张希莹 吴梦 《丝绸》 CAS CSCD 北大核心 2024年第6期108-119,共12页
为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以“京东商城”为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现... 为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以“京东商城”为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现分析、主题聚类与情感分析,从品牌、技术和售后服务的维度分析了问题的原因并提出相关建议。研究表明:国产品牌跑鞋在各价位段布局完整,销量高的跑鞋多使用满减和商品券,自营和优惠券标签对跑鞋购买具较为显著的促进作用;消费者购买跑鞋时主要关注外观细节、功能属性、性价比、穿着感受、服务优惠等方面。 展开更多
关键词 跑鞋 文本挖掘 LDA模型 聚类分析 情感分析
下载PDF
基于文本挖掘的图书馆舆情情感分析
11
作者 王龙军 王晶 +1 位作者 李光华 陈亮 《电脑与电信》 2024年第3期13-16,共4页
随着移动互联网在高校图书馆年轻读者的影响越来越大,新生代读者使用QQ即时通信软件的比例越来越大,对于图书馆QQ群文本信息进行文本挖掘从而了解图书馆的舆情,可以用于图书馆舆情预警,为图书馆决策层提供更强的舆情应对能力。采用网络... 随着移动互联网在高校图书馆年轻读者的影响越来越大,新生代读者使用QQ即时通信软件的比例越来越大,对于图书馆QQ群文本信息进行文本挖掘从而了解图书馆的舆情,可以用于图书馆舆情预警,为图书馆决策层提供更强的舆情应对能力。采用网络爬虫技术爬取2022年9月至2022年12月份时间段内的QQ群中聊天记录作为图书馆舆情数据,接着对原始的舆情数据进行数据去重、清洗等数据预处理操作,然后运用清华大学Thulac分词技术提取舆情数据的关键字、计算其权重,并使用WordCloud库进行可视化展示,接下来采用spaCy库给舆情数据计算出具体的情感倾向及分值,最后通过实验来分析图书馆舆情的情感倾向。 展开更多
关键词 文本挖掘 图书馆 舆情 情感分析 Thulac WordCloud spaCy
下载PDF
基于震后舆情的灾情信息提取研究
12
作者 闫晓美 牛艳杰 +1 位作者 王宁 许振鹏 《山西地震》 2024年第1期1-4,16,共5页
大地震发生后,通常会出现大量关于地震灾害的信息并在网络中快速传播,为快速准确地获取地震灾情信息,开展基于震后舆情提取灾情信息的相关研究。首先构建灾情信息挖掘模型,建立灾情关键词表,通过计算词向量相似度,快速提取地震灾情等相... 大地震发生后,通常会出现大量关于地震灾害的信息并在网络中快速传播,为快速准确地获取地震灾情信息,开展基于震后舆情提取灾情信息的相关研究。首先构建灾情信息挖掘模型,建立灾情关键词表,通过计算词向量相似度,快速提取地震灾情等相关信息。同时以“山东德州原平5.5级地震”为案例,验证构建模型在地震灾情提取方面的效果及其可行性和实用性。结果表明,该研究可为震后快速应对和处置灾情提供一定的参考数据和决策依据。 展开更多
关键词 地震灾情 震后舆情 网络爬虫 文本挖掘 信息提取
下载PDF
基于分数阶高斯噪声的BERT情感文本分类研究
13
作者 龙雨欣 蒲亦非 张卫华 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期121-126,共6页
由于BERT模型庞大的参数量和在预训练阶段的过拟合问题,本文针对性地提出了基于分数阶高斯噪声(fGn)的即插即用模块FGnTune.该模块利用fGn引入随机性,用于提高BERT预训练模型在情感文本分类任务中的性能. fGn是具有长程依赖和非平稳性... 由于BERT模型庞大的参数量和在预训练阶段的过拟合问题,本文针对性地提出了基于分数阶高斯噪声(fGn)的即插即用模块FGnTune.该模块利用fGn引入随机性,用于提高BERT预训练模型在情感文本分类任务中的性能. fGn是具有长程依赖和非平稳性的随机信号,通过在BERT微调阶段为参数融入fGn噪声,进一步增强模型的鲁棒性,降低过拟合的可能性.通过对不同网络模型及多种数据集进行实验分析,在不需增加模型的额外参数或增加其结构复杂度的前提下,引入FGnTune模块可以使模型的准确率在原有基础上提升约0.3%~0.9%. 展开更多
关键词 文本分类 BERT 情感文本 深度学习
下载PDF
针对文本情感分类任务的textSE-ResNeXt集成模型 被引量:7
14
作者 康雁 李浩 +2 位作者 梁文韬 宁浩宇 霍雯 《计算机工程与应用》 CSCD 北大核心 2020年第7期205-209,共5页
针对深度学习方法中文本表示形式单一,难以有效地利用语料之间细化的特征的缺陷,利用中英文语料的不同特性,有区别地对照抽取中英文语料的特征提出了一种新型的textSE-ResNeXt集成模型。通过PDTB语料库对语料的显式关系进行分析,从而截... 针对深度学习方法中文本表示形式单一,难以有效地利用语料之间细化的特征的缺陷,利用中英文语料的不同特性,有区别地对照抽取中英文语料的特征提出了一种新型的textSE-ResNeXt集成模型。通过PDTB语料库对语料的显式关系进行分析,从而截取语料主要情感部分,针对不同中、英文情感词典进行情感程度关系划分以此获得不同情感程度的子数据集。在textSE-ResNeXt神经网络模型中采用了动态卷积核策略,以此对文本数据特征进行更为有效的提取,模型中融合了SEnet和ResNeXt,有效地进行了深层次文本特征的抽取和分类。将不同情感程度的子集上对textSE-ResNeXt模型采用投票集成的方法进一步提高分类效率。分别在中文酒店评论语料和六类常见英文分类数据集上进行实验。实验结果表明了本模型的有效性。 展开更多
关键词 文本情感分类 textSE-ResNeXt 特征划分 集成模型
下载PDF
基于图神经网络与表示学习的文本情感分析
15
作者 尹帮治 徐健 唐超尘 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第3期97-103,共7页
近年来,情感分析是近年来自然语言处理领域备受学者关注的核心研究方向,传统文本情感分析模型只能捕捉文本的表面特征,在不同领域或语境下缺乏泛化能力,难以处理长文本以及语义歧义等问题.针对上述问题,本文设计了基于图神经网络与表示... 近年来,情感分析是近年来自然语言处理领域备受学者关注的核心研究方向,传统文本情感分析模型只能捕捉文本的表面特征,在不同领域或语境下缺乏泛化能力,难以处理长文本以及语义歧义等问题.针对上述问题,本文设计了基于图神经网络与表示学习的文本情感分析模型(a text sentiment analysis model based on graph neural networks and representation learning,GNNRL).利用Spacy生成句子的语法依赖树,利用图卷积神经网络进行编码,以捕捉句子中词语之间更复杂的关系;采用动态k-max池化进一步筛选特征,保留文本相对位置的序列特征,避免部分特征损失的问题,从而提高模型的特征提取能力.最后将情感特征向量输送到分类器SoftMax中,根据归一化后的值来判断情感分类.为验证本文所提GNNRL模型的有效性,采用OS10和SMP2020两个文本情感分析数据集进行测试,与HyperGAT、IBHC、BERT_CNN、BERT_GCN、TextGCN模型比较,结果表明,综合accuracy、precision、recall、f14个指标,本文改进的AM_DNN模型均优于其他模型,在文本情感中具有较好的分类性能,并探究了不同优化器的选择对本模型的影响. 展开更多
关键词 文本情感分析 图神经网络 表示学习 词嵌入
下载PDF
融合个体偏差信息的文本情感分析模型
16
作者 陈丽安 过弋 《计算机应用》 CSCD 北大核心 2024年第1期145-151,共7页
目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)... 目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)。该模型使用自注意力机制、交叉注意力机制对评论文本与个体偏差信息分别进行双向融合,在融合过程中采用定制化权重的计算方式,以缓解实际应用场景中冷启动带来的数据稀疏问题,最终得到特征充分融合的评论文本和评论双边的表示信息。选取餐饮领域、电影领域的三个真实公开数据集Yelp2013、Yelp2014、IMDB进行效果验证,与UPNN(User Product Neural Network)、NSC(Neural Sentiment Classification)、CMA(Cascading Multiway Attention)、HUAPA(Hierarchical User And Product multi-head Attention)等基准模型进行比较。实验结果表明,相较于比较模型中最好的HUAPA模型,UP-ATL的准确度在三个数据集上依次分别提高了6.9、5.9和1.6个百分点。 展开更多
关键词 文本情感分析 自注意力机制 交叉注意力机制 Transformer模型 长短期记忆网络
下载PDF
基于生成提示的无监督文本情感转换方法
17
作者 黄于欣 徐佳龙 +2 位作者 余正涛 侯书楷 周家啟 《计算机应用》 CSCD 北大核心 2024年第9期2667-2673,共7页
文本情感转换是在保留内容的基础上更改文本的情感属性。由于缺乏平行语料,现有无监督文本情感转换的方法主要通过文本重建和分类损失来构建情感和内容的潜在表征,实现情感转换。然而,这种弱监督信号训练策略在提示学习范式下的模型性... 文本情感转换是在保留内容的基础上更改文本的情感属性。由于缺乏平行语料,现有无监督文本情感转换的方法主要通过文本重建和分类损失来构建情感和内容的潜在表征,实现情感转换。然而,这种弱监督信号训练策略在提示学习范式下的模型性能退化严重。针对以上问题,提出一种基于生成提示的无监督文本情感转换方法。首先,通过提示生成器生成文本内容提示;其次,融合目标情感提示作为最终提示;最后,构建两阶段的训练策略,为模型训练提供平滑的训练梯度以解决模型性能退化的问题。在情感转换的公共数据集Yelp上的实验结果表明,所提方法的文本保留度、情感转换分数和BLEU(BiLingual Evaluation Understudy)显著优于基于生成的方法UnpairedRL,分别提高了39.1%、62.3%和14.5%。 展开更多
关键词 无监督 情感转换 内容生成提示 文本重建 情感分类
下载PDF
文本分类中Prompt Learning方法研究综述 被引量:1
18
作者 顾勋勋 刘建平 +1 位作者 邢嘉璐 任海玉 《计算机工程与应用》 CSCD 北大核心 2024年第11期50-61,共12页
文本分类是自然语言处理中的一项基础任务,在情感分析、新闻分类等领域具有重要应用。相较于传统的机器学习和深度学习模型,提示学习可以在数据不足的情况下通过构建提示来进行文本分类。近年来,GPT-3的出现推动了提示学习方法的发展,... 文本分类是自然语言处理中的一项基础任务,在情感分析、新闻分类等领域具有重要应用。相较于传统的机器学习和深度学习模型,提示学习可以在数据不足的情况下通过构建提示来进行文本分类。近年来,GPT-3的出现推动了提示学习方法的发展,并且在文本分类领域取得了显著的进展。对以往的文本分类方法进行简要梳理,分析其存在的问题与不足;阐述了提示学习的发展进程,以及构建提示模板的方法,并对用于文本分类的提示学习方法研究及成果进行了介绍和总结。最后,对提示学习在文本分类领域的发展趋势和有待进一步研究的难点进行了总结和展望。 展开更多
关键词 提示学习 文本分类 情绪分析 新闻分类
下载PDF
基于注意力头数和词性融合的藏文预训练模型
19
作者 张英 拥措 +3 位作者 斯曲卓嘎 拉毛杰 扎西永珍 尼玛扎西 《科学技术与工程》 北大核心 2024年第23期9957-9964,共8页
为了更好地学习藏文语言特征以及探究藏文预训练语言模型的最佳注意力机制头数,将词性与藏文预训练模型相结合,并进行了对比实验确定最佳的注意力头数,旨在提高语言模型对藏文语言特征的理解以及下游任务的性能。实验结果表明,在多个分... 为了更好地学习藏文语言特征以及探究藏文预训练语言模型的最佳注意力机制头数,将词性与藏文预训练模型相结合,并进行了对比实验确定最佳的注意力头数,旨在提高语言模型对藏文语言特征的理解以及下游任务的性能。实验结果表明,在多个分类任务中,注意力头数为12的预训练模型皆表现了良好的性能。此外,将词性融入预训练模型后,文本、标题和情感分类任务的模型F_(1)值分别提高了0.57%、0.92%和1.01%。实验结果证明融入词性特征后,模型可以更准确地理解藏文语言结构和语法规则,从而提高分类任务的准确率。 展开更多
关键词 注意力机制 词性 预训练语言模型 文本分类 情感分类
下载PDF
融合对抗训练与ERNIE的短文本情感分析模型
20
作者 刘婷 杜奕 +1 位作者 曹晓夏 侯淏文 《上海第二工业大学学报》 2024年第1期79-87,共9页
使用深度学习技术进行文本情感分类是近年来自然语言处理领域的研究热点,好的文本表示是提升深度学习模型分类性能的关键因素。由于短文本蕴含情感信息较少、训练时易受噪声干扰,因此提出一种融合对抗训练的文本情感分析模型PERNIE RCN... 使用深度学习技术进行文本情感分类是近年来自然语言处理领域的研究热点,好的文本表示是提升深度学习模型分类性能的关键因素。由于短文本蕴含情感信息较少、训练时易受噪声干扰,因此提出一种融合对抗训练的文本情感分析模型PERNIE RCNN。该模型使用ERNIE预训练模型对输入文本进行向量化,初步提取文本的情感特征。随后在ERNIE预训练模型的输出向量上添加噪声扰动,对原始样本进行对抗攻击生成对抗样本,并将生成的对抗样本送入分类模型进行对抗训练,提高模型面临噪声攻击时的鲁棒性。实验结果表明,PERNIE RCNN模型的文本分类性能更好,泛化能力更优。 展开更多
关键词 短文本情感分析 深度学习 对抗训练 文本分类
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部