期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism
1
作者 TugbaÇelikten Aytug Onan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3351-3377,共27页
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a... Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications. 展开更多
关键词 Generative artificial intelligence AI-generated text detection attention mechanism hybrid model for text classification
下载PDF
Question-Answering Pair Matching Based on Question Classification and Ensemble Sentence Embedding
2
作者 Jae-Seok Jang Hyuk-Yoon Kwon 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3471-3489,共19页
Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,w... Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,we deal with the QA pair matching approach in QA models,which finds the most relevant question and its recommended answer for a given question.Existing studies for the approach performed on the entire dataset or datasets within a category that the question writer manually specifies.In contrast,we aim to automatically find the category to which the question belongs by employing the text classification model and to find the answer corresponding to the question within the category.Due to the text classification model,we can effectively reduce the search space for finding the answers to a given question.Therefore,the proposed model improves the accuracy of the QA matching model and significantly reduces the model inference time.Furthermore,to improve the performance of finding similar sentences in each category,we present an ensemble embedding model for sentences,improving the performance compared to the individual embedding models.Using real-world QA data sets,we evaluate the performance of the proposed QA matching model.As a result,the accuracy of our final ensemble embedding model based on the text classification model is 81.18%,which outperforms the existing models by 9.81%∼14.16%point.Moreover,in terms of the model inference speed,our model is faster than the existing models by 2.61∼5.07 times due to the effective reduction of search spaces by the text classification model. 展开更多
关键词 Question-answering text classification model data augmentation text embedding
下载PDF
Stochastic Variational Inference-Based Parallel and Online Supervised Topic Model for Large-Scale Text Processing 被引量:1
3
作者 Yang Li Wen-Zhuo Song Bo Yang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第5期1007-1022,共16页
Topic modeling is a mainstream and effective technology to deal with text data, with wide applications in text analysis, natural language, personalized recommendation, computer vision, etc. Among all the known topic m... Topic modeling is a mainstream and effective technology to deal with text data, with wide applications in text analysis, natural language, personalized recommendation, computer vision, etc. Among all the known topic models, supervised Latent Dirichlet Allocation (sLDA) is acknowledged as a popular and competitive supervised topic model. How- ever, the gradual increase of the scale of datasets makes sLDA more and more inefficient and time-consuming, and limits its applications in a very narrow range. To solve it, a parallel online sLDA, named PO-sLDA (Parallel and Online sLDA), is proposed in this study. It uses the stochastic variational inference as the learning method to make the training procedure more rapid and efficient, and a parallel computing mechanism implemented via the MapReduce framework is proposed to promote the capacity of cloud computing and big data processing. The online training capacity supported by PO-sLDA expands the application scope of this approach, making it instrumental for real-life applications with high real-time demand. The validation using two datasets with different sizes shows that the proposed approach has the comparative accuracy as the sLDA and can efficiently accelerate the training procedure. Moreover, its good convergence and online training capacity make it lucrative for the large-scale text data analyzing and processing. 展开更多
关键词 topic modeling large-scale text classification stochastic variational inference cloud computing online learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部