期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Question-Answering Pair Matching Based on Question Classification and Ensemble Sentence Embedding
1
作者 Jae-Seok Jang Hyuk-Yoon Kwon 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3471-3489,共19页
Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,w... Question-answering(QA)models find answers to a given question.The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets.In this paper,we deal with the QA pair matching approach in QA models,which finds the most relevant question and its recommended answer for a given question.Existing studies for the approach performed on the entire dataset or datasets within a category that the question writer manually specifies.In contrast,we aim to automatically find the category to which the question belongs by employing the text classification model and to find the answer corresponding to the question within the category.Due to the text classification model,we can effectively reduce the search space for finding the answers to a given question.Therefore,the proposed model improves the accuracy of the QA matching model and significantly reduces the model inference time.Furthermore,to improve the performance of finding similar sentences in each category,we present an ensemble embedding model for sentences,improving the performance compared to the individual embedding models.Using real-world QA data sets,we evaluate the performance of the proposed QA matching model.As a result,the accuracy of our final ensemble embedding model based on the text classification model is 81.18%,which outperforms the existing models by 9.81%∼14.16%point.Moreover,in terms of the model inference speed,our model is faster than the existing models by 2.61∼5.07 times due to the effective reduction of search spaces by the text classification model. 展开更多
关键词 Question-answering text classification model data augmentation text embedding
下载PDF
Measuring Similarity of Academic Articles with Semantic Profile and Joint Word Embedding 被引量:11
2
作者 Ming Liu Bo Lang +1 位作者 Zepeng Gu Ahmed Zeeshan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第6期619-632,共14页
Long-document semantic measurement has great significance in many applications such as semantic searchs, plagiarism detection, and automatic technical surveys. However, research efforts have mainly focused on the sema... Long-document semantic measurement has great significance in many applications such as semantic searchs, plagiarism detection, and automatic technical surveys. However, research efforts have mainly focused on the semantic similarity of short texts. Document-level semantic measurement remains an open issue due to problems such as the omission of background knowledge and topic transition. In this paper, we propose a novel semantic matching method for long documents in the academic domain. To accurately represent the general meaning of an academic article, we construct a semantic profile in which key semantic elements such as the research purpose, methodology, and domain are included and enriched. As such, we can obtain the overall semantic similarity of two papers by computing the distance between their profiles. The distances between the concepts of two different semantic profiles are measured by word vectors. To improve the semantic representation quality of word vectors, we propose a joint word-embedding model for incorporating a domain-specific semantic relation constraint into the traditional context constraint. Our experimental results demonstrate that, in the measurement of document semantic similarity, our approach achieves substantial improvement over state-of-the-art methods, and our joint word-embedding model produces significantly better word representations than traditional word-embedding models. 展开更多
关键词 document semantic similarity text understanding semantic enrichment word embedding scientific literature analysis
原文传递
The State of the Art of Natural Language Processing-A Systematic Automated Review of NLP Literature Using NLP Techniques
3
作者 Jan Sawicki Maria Ganzha Marcin Paprzycki 《Data Intelligence》 EI 2023年第3期707-749,共43页
Nowadays,natural language processing(NLP)is one of the most popular areas of,broadly understood,artificial intelligence.Therefore,every day,new research contributions are posted,for instance,to the arXiv repository.He... Nowadays,natural language processing(NLP)is one of the most popular areas of,broadly understood,artificial intelligence.Therefore,every day,new research contributions are posted,for instance,to the arXiv repository.Hence,it is rather difficult to capture the current"state of the field"and thus,to enter it.This brought the id-art NLP techniques to analyse the NLP-focused literature.As a result,(1)meta-level knowledge,concerning the current state of NLP has been captured,and(2)a guide to use of basic NLP tools is provided.It should be noted that all the tools and the dataset described in this contribution are publicly available.Furthermore,the originality of this review lies in its full automation.This allows easy reproducibility and continuation and updating of this research in the future as new researches emerge in the field of NLP. 展开更多
关键词 Natural language processing text processing Literature survey Keyword search Keyphrase search text embeddings text summarizations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部