期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
A Study on Short Text Matching Method Based on KS-BERT Algorithm
1
作者 YANG Hao-wen SUN Mei-feng 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期164-173,共10页
To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i... To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively. 展开更多
关键词 Deep learning Short text matching Graph attention network Knowledge enhancement
下载PDF
Multi-granularities capture interaction information for text matching accuracy enhancement
2
作者 Cao Xiaopeng Jin Liang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2020年第1期100-108,共9页
Modeling and matching texts is a critical issue in natural language processing(NLP) tasks. In order to improve the accuracy of text matching, multi-granularities capture matching features(MG-CMF) model was proposed. T... Modeling and matching texts is a critical issue in natural language processing(NLP) tasks. In order to improve the accuracy of text matching, multi-granularities capture matching features(MG-CMF) model was proposed. The proposed model used convolution operations to construct the representation of text under multiple granularities, used max-pooling operations to filter more reasonable text representations and built a matching matrix at different granularities. Then, the convolution neural network(CNN) was used to capture the matching information in each granularity. Finally, the captured matching features were input into the fully connected neural network to obtain the matching similarity. By making some experiments, the results indicate that the MG-CMF model not only gets multiple granularity representations of sentences but also can obtain matching information from multiple granularities of sentences better than the other text matching models. 展开更多
关键词 representation MODEL INTERACTION MODEL text matchING MULTI-GRANULARITY CAPTURE the matchING INFORMATION
原文传递
融合领域要素知识的多粒度法律文本匹配方法
3
作者 罗森林 董勃 +1 位作者 潘丽敏 吴舟婷 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第3期298-305,共8页
法律文本匹配的目标是快速提炼对比要素信息并发现关联案件,保障法律适用的统一性同案同判.现有方法未能充分利用特定类型案件的先验知识,其核心要素提取准确率低,仅进行词向量的权重计算,忽略字义、句义、句法的向量信息,影响匹配效果... 法律文本匹配的目标是快速提炼对比要素信息并发现关联案件,保障法律适用的统一性同案同判.现有方法未能充分利用特定类型案件的先验知识,其核心要素提取准确率低,仅进行词向量的权重计算,忽略字义、句义、句法的向量信息,影响匹配效果.提出一种融合领域要素知识的多粒度法律文本匹配方法,通过建立特定案件类型领域知识库准确提取法律要素,引入字、词、句3个粒度的注意力机制计算不同文本向量的权重提升匹配模型效果.实验结果表明,该方法在公开数据集上可达到最好效果. 展开更多
关键词 文本匹配 法律要素 多粒度 领域知识
下载PDF
基于主题模型的通用文本匹配方法
4
作者 黄振业 莫淦清 余可曼 《计算机应用与软件》 北大核心 2024年第5期310-318,349,共10页
检测长文本和短文本相似性的应用场景越来越多,文本对的一致性检测大多可以统一抽象成文本相似性的比较问题。该问题的难点在于短文本是零散的,从而很难判断其属于哪个领域及其背景知识,也难以引入词嵌入来解决在通用场景的具体文本匹... 检测长文本和短文本相似性的应用场景越来越多,文本对的一致性检测大多可以统一抽象成文本相似性的比较问题。该问题的难点在于短文本是零散的,从而很难判断其属于哪个领域及其背景知识,也难以引入词嵌入来解决在通用场景的具体文本匹配问题。基于这个问题,提出一种新的基于文本聚类主题模型的轻量方法,不需要利用额外的背景知识来匹配通用文本相似性。在两个经典测试样本数据集上的实验结果表明,该方法的文本相似性检测效率非常高。 展开更多
关键词 自然语言处理 文本匹配 主题模型 吉布斯采样
下载PDF
融合语义增强和位置编码的图文匹配方法
5
作者 赵婷婷 常玉广 +2 位作者 郭宇 陈亚瑞 王嫄 《天津科技大学学报》 CAS 2024年第4期63-72,共10页
图文匹配是跨模态基础任务之一,其核心是如何准确评估图像语义与文本语义之间的相似度。现有方法是通过引入相关阈值,最大限度地区分相关和无关分布,以获得更好的语义对齐。然而,对于特征本身,其语义之间缺乏相互关联,且对于缺乏空间位... 图文匹配是跨模态基础任务之一,其核心是如何准确评估图像语义与文本语义之间的相似度。现有方法是通过引入相关阈值,最大限度地区分相关和无关分布,以获得更好的语义对齐。然而,对于特征本身,其语义之间缺乏相互关联,且对于缺乏空间位置信息的图像区域与文本单词很难准确对齐,从而不可避免地限制了相关阈值的学习导致语义无法准确对齐。针对此问题,本文提出一种融合语义增强和位置编码的自适应相关性可学习注意力的图文匹配方法。首先,在初步提取特征的基础上构造图像(文本)无向全连通图,使用图注意力去聚合邻居的信息,获得语义增强的特征。然后,对图像区域的绝对位置信息编码,在具备了空间语义的图像区域与文本单词相似性的基础上获得最大程度区分的相关和无关分布,更好地学习两个分布之间的最优相关边界。最后,通过公开数据集Flickr 30 k和MSCOCO,利用Recall@K指标对比实验,验证本文方法的有效性。 展开更多
关键词 跨模态图文匹配 图注意力 位置编码 相关性阈值
下载PDF
A Novel Efficient and Effective Preprocessing Algorithm for Text Classification
6
作者 Lijie Zhu Difan Luo 《Journal of Computer and Communications》 2023年第3期1-14,共14页
Text classification is an essential task of natural language processing. Preprocessing, which determines the representation of text features, is one of the key steps of text classification architecture. It proposed a ... Text classification is an essential task of natural language processing. Preprocessing, which determines the representation of text features, is one of the key steps of text classification architecture. It proposed a novel efficient and effective preprocessing algorithm with three methods for text classification combining the Orthogonal Matching Pursuit algorithm to perform the classification. The main idea of the novel preprocessing strategy is that it combined stopword removal and/or regular filtering with tokenization and lowercase conversion, which can effectively reduce the feature dimension and improve the text feature matrix quality. Simulation tests on the 20 newsgroups dataset show that compared with the existing state-of-the-art method, the new method reduces the number of features by 19.85%, 34.35%, 26.25% and 38.67%, improves accuracy by 7.36%, 8.8%, 5.71% and 7.73%, and increases the speed of text classification by 17.38%, 25.64%, 23.76% and 33.38% on the four data, respectively. 展开更多
关键词 text Classification PREPROCESSING Feature Dimension Orthogonal matching Pursuit
下载PDF
Region-Aware Fashion Contrastive Learning for Unified Attribute Recognition and Composed Retrieval
7
作者 WANG Kangping ZHAO Mingbo 《Journal of Donghua University(English Edition)》 CAS 2024年第4期405-415,共11页
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me... Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts. 展开更多
关键词 attribute recognition image retrieval contrastive language-image pre-training(CLIP) image text matching transformer
下载PDF
基于正则表达式和Jaccard系数的智能变电站录波通道同源匹配 被引量:2
8
作者 王冠南 郭丽娟 +2 位作者 彭曙蓉 陈慧霞 黄浩宇 《浙江电力》 2024年第1期20-27,共8页
针对220kV及以上电压等级智能变电站双套录波通道同源匹配问题,提出一种基于正则表达式和Jaccard系数的智能变电站录波通道同源匹配方法。首先,针对录波通道命名不规范的问题,使用正则表达式对通道名称文本进行预处理,统一通道名称的表... 针对220kV及以上电压等级智能变电站双套录波通道同源匹配问题,提出一种基于正则表达式和Jaccard系数的智能变电站录波通道同源匹配方法。首先,针对录波通道命名不规范的问题,使用正则表达式对通道名称文本进行预处理,统一通道名称的表达形式;同时,使用jieba分词算法和去停用词操作,去除通道名称文本中可能存在的冗余信息。然后,使用Jaccard相似系数匹配算法计算录波通道名称文本之间的相似度,依据相似度大小筛选出同源通道。最后,基于电网实际的录波文件数据进行仿真分析。仿真结果表明:所提方法可有效实现智能变电站录波通道同源匹配。 展开更多
关键词 录波通道同源匹配 文本匹配 正则表达式 Jaccard相似系数
下载PDF
基于知识增强的文本语义匹配模型研究 被引量:1
9
作者 张贞港 余传明 《情报学报》 CSSCI CSCD 北大核心 2024年第4期416-429,共14页
文本语义匹配模型在信息检索、文本挖掘等领域已经获得了广泛应用。为解决现有模型主要从文本自身角度判断文本之间的语义关系而忽略对外部知识有效利用的问题,本文提出一种新的基于知识增强的文本语义匹配模型,以知识图谱实体作为外部... 文本语义匹配模型在信息检索、文本挖掘等领域已经获得了广泛应用。为解决现有模型主要从文本自身角度判断文本之间的语义关系而忽略对外部知识有效利用的问题,本文提出一种新的基于知识增强的文本语义匹配模型,以知识图谱实体作为外部知识,有效建模文本的外部知识信息,并自适应地过滤外部知识中存在的噪声。针对自然语言推理和释义识别两个文本语义匹配任务,与基线方法相比,本文模型在大多数指标上取得了最优效果。研究结果表明,本文模型有助于揭示知识图谱在文本语义匹配任务中的作用,为将知识图谱应用到智能信息服务领域提供了参考。 展开更多
关键词 文本语义匹配 信息检索 知识图谱 知识增强
下载PDF
基于关键实体和文本摘要多特征融合的话题匹配算法
10
作者 纪科 张秀 +3 位作者 马坤 孙润元 陈贞翔 邬俊 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期51-59,共9页
随着网络的快速普及,互联网新闻的数量剧增,在这种情况下,如何有效地找到更加符合特定主题的相关报道成为一个迫切需要解决的问题。针对这一问题,提出了基于关键实体和文本摘要多特征融合的话题匹配算法。首先,使用W2NER模型进行命名实... 随着网络的快速普及,互联网新闻的数量剧增,在这种情况下,如何有效地找到更加符合特定主题的相关报道成为一个迫切需要解决的问题。针对这一问题,提出了基于关键实体和文本摘要多特征融合的话题匹配算法。首先,使用W2NER模型进行命名实体识别,通过词频、TF-IDF、词的合群性、词词相似度和词句相似度特征,提取关键的实体。其次,使用Pegasus模型进行文本摘要,通过BiLSTM融合关键实体特征与文本摘要特征,得到新闻文本的深层次语义特征。再次,使用交叉注意力机制对待匹配新闻进行特征交互,增进彼此的联系。最后,融合新闻文本的深层次语义特征和文本交互特征,共同参与文本话题匹配的判断。在来自于搜狐的真实数据上进行了不同算法的对比实验,结果表明:所提算法准确率和精确率均与其他算法效果相近,召回率和F1值均有所提升。 展开更多
关键词 话题匹配 关键实体 文本摘要 文本匹配 信息检索
下载PDF
融合角色心理画像的心理健康文本匹配模型
11
作者 赵芸 刘德喜 +2 位作者 万常选 刘喜平 廖国琼 《计算机研究与发展》 EI CSCD 北大核心 2024年第7期1812-1824,共13页
全球心理健康问题形势严峻,由于心理健康服务的从业人员不足,遭受心理健康困扰的人并不总是能获得专业的心理健康服务.检索式心理健康社区自动问答可以快速地为需要心理健康服务的人提供相应的信息自助服务.与传统检索式社区问答中的文... 全球心理健康问题形势严峻,由于心理健康服务的从业人员不足,遭受心理健康困扰的人并不总是能获得专业的心理健康服务.检索式心理健康社区自动问答可以快速地为需要心理健康服务的人提供相应的信息自助服务.与传统检索式社区问答中的文本匹配不同,在匹配支持帖和求助帖时,需要考虑2种不同层面的匹配准则:语义层面和心理层面.为了解决该问题,提出融合角色心理画像的2阶段文本匹配模型(two-stage text matching model integrating characters’mental portrait,T2CMP),该模型引入心理特征用于构建角色心理画像,从而辅助模型理解文本心理层面的内容和匹配关系.同时为了提升检索效率以及减少大量负样例带来的噪声问题,将文本匹配任务拆分为2阶段的序列型子任务.首先针对每条求助帖,使用基于语义的筛选模型甄别出候选支持帖;然后依据用户的角色心理画像,使用多层注意力机制将其与语义信息有效融合,提高模型的总体效果.在MHCQA数据集上的实验结果显示,T2CMP比现有优秀算法拥有更高的F1值. 展开更多
关键词 文本匹配 2阶段模型 角色心理健康画像 多层注意力机制 心理健康信息自助服务
下载PDF
基于多级语义对齐的图像-文本匹配算法
12
作者 李艺茹 姚涛 +2 位作者 张林梁 孙玉娟 付海燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期551-558,共8页
图像中的区域特征更关注于图像中的前景信息,背景信息往往被忽略,如何有效的联合局部特征和全局特征还没有得到充分地研究。为解决上述问题,加强全局概念和局部概念之间的关联得到更准确的视觉特征,提出一种基于多级语义对齐的图像-文... 图像中的区域特征更关注于图像中的前景信息,背景信息往往被忽略,如何有效的联合局部特征和全局特征还没有得到充分地研究。为解决上述问题,加强全局概念和局部概念之间的关联得到更准确的视觉特征,提出一种基于多级语义对齐的图像-文本匹配算法。提取局部图像特征,得到图像中的细粒度信息;提取全局图像特征,将环境信息引入到网络的学习中,从而得到不同的视觉关系层次,为联合的视觉特征提供更多的信息;将全局-局部图像特征进行联合,将联合后的视觉特征和文本特征进行全局-局部对齐得到更加精准的相似度表示。通过大量的实验和分析表明:所提算法在2个公共数据集上具有有效性。 展开更多
关键词 图像-文本匹配 跨模态信息处理 特征提取 神经网络 特征融合
下载PDF
融合量子干涉信息的双重特征文本表示模型
13
作者 高珲 张鹏 张静 《模式识别与人工智能》 EI CSCD 北大核心 2024年第2期172-180,共9页
在信息检索领域,量子干涉理论已应用于文档相关性、次序效应等核心问题的研究中,旨在建模用户认知引起的类量子干涉现象.文中从语言理解的需求出发,利用量子理论的数学工具分析语义组合过程中存在的语义演化现象,提出融合量子干涉信息... 在信息检索领域,量子干涉理论已应用于文档相关性、次序效应等核心问题的研究中,旨在建模用户认知引起的类量子干涉现象.文中从语言理解的需求出发,利用量子理论的数学工具分析语义组合过程中存在的语义演化现象,提出融合量子干涉信息的双重特征文本表示模型(Quantum Interference Based Duet-Feature Text Representation Model,QDTM).模型以约化密度矩阵为语言表示的核心组件,有效建模维度级别的语义干涉信息.在此基础上,构建捕获全局特征信息与局部特征信息的模型结构,满足语言理解过程中不同粒度的语义特征需求.在文本分类数据集和问答数据集上的实验表明,QDTM的性能优于量子启发的语言模型和神经网络文本匹配模型. 展开更多
关键词 量子干涉 文本匹配 约化密度矩阵 语义表示 自然语言处理
下载PDF
基于文本引导下的多模态医学图像分析算法
14
作者 樊琳 龚勋 郑岑洋 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2341-2355,共15页
结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分... 结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分析算法框架(Text-guided Multi-modal Medical image analysis framework,TMM-Net).TMM-Net使用多阶段的诊断文本来引导模型学习,以提取图像中的关键诊断信息特征,然后通过交叉模态注意力机制促进多模态特征之间的交互.值得注意的是,TMM-Net通过预测病变属性来模拟临床诊断过程,从而增强了可解释性.验证实验在两个中心包含10 025个模态数据对的数据集上进行.结果表明,该方法相比目前最优的GISTs诊断方法精度提升7.7%,同时获得了最高的(Area Under the Curve,AUC)值:0.927,其可解释性可以更好地适合临床需求. 展开更多
关键词 多模态融合 模型可解释性 图像-文本匹配 胃肠道间质瘤 胃镜超声 白光内镜
下载PDF
利用BERT和覆盖率机制改进的HiNT文本检索模型
15
作者 邸剑 刘骏华 曹锦纲 《智能系统学报》 CSCD 北大核心 2024年第3期719-727,共9页
为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个... 为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个段提取关键主题词,然后用基于变换器的双向编码器(bidirectional encoder representations from transformers,BERT)模型将其编码为多个稠密的语义向量,再利用引入覆盖率机制的局部匹配层进行处理,使模型可以根据文档的局部段级别粒度和全局文档级别粒度进行相关性计算,提高检索的准确率。本文提出的模型在MS MARCO和webtext2019zh数据集上与多个检索模型进行对比,取得了最优结果,验证了本文提出模型的有效性。 展开更多
关键词 基于变换器的双向编码器 分层神经匹配模型 覆盖率机制 文本检索 语义表示 特征提取 自然语言处理 相似度 多粒度
下载PDF
双向注意力文本关键词匹配法条推荐 被引量:1
16
作者 丁娜 刘鹏 +1 位作者 邵惠鹏 王学奎 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期79-88,共10页
提出一种双向注意力文本关键词匹配的法条推荐模型(BiAKLaw)。该模型以预训练语言模型BERT作为基础匹配模型,利用双向注意力机制提取字符级对齐特征和关键词差异特征,融合对齐特征、差异特征和关键词语义表征来提升匹配效果。在裁判文... 提出一种双向注意力文本关键词匹配的法条推荐模型(BiAKLaw)。该模型以预训练语言模型BERT作为基础匹配模型,利用双向注意力机制提取字符级对齐特征和关键词差异特征,融合对齐特征、差异特征和关键词语义表征来提升匹配效果。在裁判文书交通肇事和故意伤害数据集上的实验结果表明,与BERT模型相比,BiAKLaw在评价指标F1上分别提升3.74%和3.43%。 展开更多
关键词 法条推荐 案件事实 文本匹配 注意力机制
下载PDF
面向中文科学数据集的句子级语义匹配模型
17
作者 刘建平 初新涛 +3 位作者 王健 顾勋勋 王萌 王影菲 《郑州大学学报(工学版)》 CAS 北大核心 2024年第6期56-64,共9页
针对现有以词为粒度的语义匹配模型难以理解句子级科学数据集元数据的问题,提出了一个面向中文科学数据集的句子级语义匹配(CSDSM)模型。该模型使用CSL数据集对SimCSE和CoSENT进行训练生成CoSENT预训练模型。基于CoSENT模型,引入多头自... 针对现有以词为粒度的语义匹配模型难以理解句子级科学数据集元数据的问题,提出了一个面向中文科学数据集的句子级语义匹配(CSDSM)模型。该模型使用CSL数据集对SimCSE和CoSENT进行训练生成CoSENT预训练模型。基于CoSENT模型,引入多头自注意力机制进行特征提取,通过余弦相似度与KNN分类结果加权求和得到最终输出。以国家地球系统科学数据中心开放的语义元数据信息作为自建科学数据集进行实验,实验结果表明:与中文BERT模型相比,所提模型在公共数据集AFQMC、LCQMC、Chinese-STS-B和PAWS-X上的Spearman指标ρ分别提升了0.0448,0.0290,0.1777和0.0509;在自建科学数据集上的F 1和Acc分别提升了0.0788和0.0634,所提模型能够有效地解决科学数据集句子级语义匹配问题。 展开更多
关键词 文本匹配 语义匹配 预训练模型 科学数据集 自然语言处理
下载PDF
基于图像相对位置和负向感知的图文匹配
18
作者 余超 王铭硕 +1 位作者 赵子樵 于清 《现代电子技术》 北大核心 2024年第17期88-93,共6页
图文匹配任务在计算机视觉以及多模态信息处理领域引起了广泛关注。这一跨模态任务主要难点在于如何高效地提取视觉和文本的信息以及如何解决不一致图文冲突问题。文中提出了一种新颖的图像文本匹配方法,利用图像对象相对位置的注意力... 图文匹配任务在计算机视觉以及多模态信息处理领域引起了广泛关注。这一跨模态任务主要难点在于如何高效地提取视觉和文本的信息以及如何解决不一致图文冲突问题。文中提出了一种新颖的图像文本匹配方法,利用图像对象相对位置的注意力机制解决忽视图像中物体相对位置信息的问题,从而更好地关注视觉信息的提取,同时为了解决忽视图像-文本间不对齐内容相似度贡献的问题,运用了负向感知模块关注物体相对位置和文本中的单词非对齐的信息对相似度的负贡献,从而提高图像-文本匹配相似度的准确性。最后,在公开图文匹配数据集Flickr30K上达到了最好的r_(Sum),比当前最好的负向感知模型提高了7.3,取得了最先进的性能。 展开更多
关键词 多模态 图文匹配 视觉信息提取 相对位置编码 注意力机制 负向感知
下载PDF
基于样本对语义主动挖掘的图文匹配算法
19
作者 陈永锋 刘劲 +2 位作者 杨志景 陈锐涵 谭俊鹏 《广东工业大学学报》 CAS 2024年第4期89-97,共9页
针对目前基于共识学习的图文匹配算法无法有效匹配图像−文本样本对中难分的负样本,模型的泛化能力较弱,在大规模数据集上效果不佳等不足,本文提出了一种基于样本对语义主动挖掘的图文匹配模型。首先,提出的自适应分层强化损失具有多样... 针对目前基于共识学习的图文匹配算法无法有效匹配图像−文本样本对中难分的负样本,模型的泛化能力较弱,在大规模数据集上效果不佳等不足,本文提出了一种基于样本对语义主动挖掘的图文匹配模型。首先,提出的自适应分层强化损失具有多样化的学习模式,在传统的三元组损失基础上,增加具有预测性的候选实例(难以分辨的样本对)进行辅助训练。其主动学习模式通过一种惩罚机制来关注难分的负样本,以提高判别能力。此外,提出的模型还能自适应地从非真实标签样本中挖掘出更多隐藏的相关语义表征,从而提高了模型的性能和泛化能力。最后,在Flickr30K和MSCOCO公共数据集上的实验结果证明了该算法的有效性,其性能达到了目前先进水平。本方法有效地结合了图像文本两种模态,能有效提高自然语言搜索和视觉问题回答等应用的性能。 展开更多
关键词 图文匹配 共识学习 三元组损失 难分的负对 跨模态检索
下载PDF
基于要素关联图的汉越跨语言事件检索方法
20
作者 赵周颖 余正涛 +2 位作者 黄于欣 陈瑞清 朱恩昌 《现代电子技术》 北大核心 2024年第7期127-132,共6页
汉越跨语言事件检索旨在根据输入的中文事件查询短语,检索出相关的越南语新闻事件文档。由于查询文档的新闻文本较长,中文事件查询短语与越南语的查询文档长度不一,表达差异较大,且查询文档中往往会包含大量与其描述的核心事件无关的噪... 汉越跨语言事件检索旨在根据输入的中文事件查询短语,检索出相关的越南语新闻事件文档。由于查询文档的新闻文本较长,中文事件查询短语与越南语的查询文档长度不一,表达差异较大,且查询文档中往往会包含大量与其描述的核心事件无关的噪声文本,现有的模型不能很好地捕获事件匹配特征,匹配效果欠佳。基于此,文中提出基于要素关联图的汉越跨语言事件检索方法。首先,预训练一个汉越双语词嵌入来解决跨语言问题;然后,抽取查询文档中的关键信息(关键词和实体)以构建要素关联图;最后,通过引入一个图编码器对构建的要素图进行编码,生成结构化的事件信息来增强传统的事件检索模型。实验结果表明文中提出的方法优于传统的基线方法。 展开更多
关键词 跨语言事件检索 跨语言词嵌入 要素关联图 图神经网络 文本匹配 事件检索
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部