Practical real-world scenarios such as the Internet,social networks,and biological networks present the challenges of data scarcity and complex correlations,which limit the applications of artificial intelligence.The ...Practical real-world scenarios such as the Internet,social networks,and biological networks present the challenges of data scarcity and complex correlations,which limit the applications of artificial intelligence.The graph structure is a typical tool used to formulate such correlations,it is incapable of modeling highorder correlations among different objects in systems;thus,the graph structure cannot fully convey the intricate correlations among objects.Confronted with the aforementioned two challenges,hypergraph computation models high-order correlations among data,knowledge,and rules through hyperedges and leverages these high-order correlations to enhance the data.Additionally,hypergraph computation achieves collaborative computation using data and high-order correlations,thereby offering greater modeling flexibility.In particular,we introduce three types of hypergraph computation methods:①hypergraph structure modeling,②hypergraph semantic computing,and③efficient hypergraph computing.We then specify how to adopt hypergraph computation in practice by focusing on specific tasks such as three-dimensional(3D)object recognition,revealing that hypergraph computation can reduce the data requirement by 80%while achieving comparable performance or improve the performance by 52%given the same data,compared with a traditional data-based method.A comprehensive overview of the applications of hypergraph computation in diverse domains,such as intelligent medicine and computer vision,is also provided.Finally,we introduce an open-source deep learning library,DeepHypergraph(DHG),which can serve as a tool for the practical usage of hypergraph computation.展开更多
An edge coloring of hypergraph H is a function such that holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is ...An edge coloring of hypergraph H is a function such that holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by . Erdös, Faber and Lovász proposed a famous conjecture that holds for any loopless linear hypergraph H with n vertices. In this paper, we show that is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021.展开更多
Deep matrix factorization(DMF)has been demonstrated to be a powerful tool to take in the complex hierarchical information of multi-view data(MDR).However,existing multiview DMF methods mainly explore the consistency o...Deep matrix factorization(DMF)has been demonstrated to be a powerful tool to take in the complex hierarchical information of multi-view data(MDR).However,existing multiview DMF methods mainly explore the consistency of multi-view data,while neglecting the diversity among different views as well as the high-order relationships of data,resulting in the loss of valuable complementary information.In this paper,we design a hypergraph regularized diverse deep matrix factorization(HDDMF)model for multi-view data representation,to jointly utilize multi-view diversity and a high-order manifold in a multilayer factorization framework.A novel diversity enhancement term is designed to exploit the structural complementarity between different views of data.Hypergraph regularization is utilized to preserve the high-order geometry structure of data in each view.An efficient iterative optimization algorithm is developed to solve the proposed model with theoretical convergence analysis.Experimental results on five real-world data sets demonstrate that the proposed method significantly outperforms stateof-the-art multi-view learning approaches.展开更多
Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement o...Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively.展开更多
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep...The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.展开更多
Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(H...Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.展开更多
Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better ...Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better to envisage the upcoming workload for early detection of overload status,underload status and to trigger the migration at an appropriate point wherein enough number of resources are available.Though various statistical and machine learning approaches are widely applied for resource usage prediction,they often failed to handle the increase of non-linear CDC data.To overcome this issue,a novel Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory(CDB-LSTM)model is proposed.The CDB-LSTM adopts Helly property of Hypergraph and Savitzky–Golay(SG)filter to select informative samples and exclude noisy inference&outliers.The proposed approach optimizes resource usage prediction and reduces the number of migrations with minimal computa-tional complexity during live VM migration.Further,the proposed prediction approach implements the correlation co-efficient measure to select the appropriate destination server for VM migration.A Hypergraph based CDB-LSTM was vali-dated using Google cluster dataset and compared with state-of-the-art approaches in terms of various evaluation metrics.展开更多
近年来,社会化推荐作为推荐算法之一被广泛应用于各大平台.由于引入了用户的社交信息,社会化推荐可以较好地缓解数据稀疏问题.然而,大部分社会化推荐难以高效地从原始信息中提取用户的有效信息,导致引入社会信息的同时也会引入大量噪声...近年来,社会化推荐作为推荐算法之一被广泛应用于各大平台.由于引入了用户的社交信息,社会化推荐可以较好地缓解数据稀疏问题.然而,大部分社会化推荐难以高效地从原始信息中提取用户的有效信息,导致引入社会信息的同时也会引入大量噪声.为了解决上述问题,本文提出了SRBHL(Social Recommendation Based on Hypergraph embedding and Limited attention)模型,通过超图嵌入模块提取用户的历史行为信息和社交信息,以缓解原始目标用户数据稀疏问题,并结合有限注意力模块来过滤原始信息的噪声,最后将得到的有效好友信息用于推荐.在Yelp-Urbana、Yelp-Phoenix和Epinions3个真实数据集上的实验结果表明SRBHL模型相比其他的推荐算法表现更出色.此外,本文还对SRBHL模型进行了鲁棒性分析,并给出了模型最优参数的取值范围.展开更多
针对多链式区块链采用主链最终共识机制,导致主链负载大,制约从链性能等问题,论文提出一种基于超图和MuSig2聚合签名的联盟链主从多链共识机制.首先根据超图理论,构建以横贯超图为主链,子超图为从链的联盟链主从多链架构;然后借鉴分治思...针对多链式区块链采用主链最终共识机制,导致主链负载大,制约从链性能等问题,论文提出一种基于超图和MuSig2聚合签名的联盟链主从多链共识机制.首先根据超图理论,构建以横贯超图为主链,子超图为从链的联盟链主从多链架构;然后借鉴分治思想,结合“背书-排序-验证”的共识方式,构建分层分类共识机制,通过分类处理交易降低主链负载压力;最后构建基于MuSig2聚合签名的联盟链多方背书签名方法,提升背书签名的验证效率.性能分析表明:基于MuSig2聚合签名的联盟链多方背书签名安全可靠,基于超图和MuSig2聚合签名的分层分类共识机制具有强一致性和线性时间复杂度.实验结果表明:基于MuSig2聚合签名的多方背书方法的总效率是椭圆曲线数字签名算法(Elliptic Curve Digital Signature Algorithm,ECDSA)的1.55倍,分层分类共识机制能够提升12.5%的共识效率.该机制具有较高性能,可满足企业多样化业务需求.展开更多
文摘Practical real-world scenarios such as the Internet,social networks,and biological networks present the challenges of data scarcity and complex correlations,which limit the applications of artificial intelligence.The graph structure is a typical tool used to formulate such correlations,it is incapable of modeling highorder correlations among different objects in systems;thus,the graph structure cannot fully convey the intricate correlations among objects.Confronted with the aforementioned two challenges,hypergraph computation models high-order correlations among data,knowledge,and rules through hyperedges and leverages these high-order correlations to enhance the data.Additionally,hypergraph computation achieves collaborative computation using data and high-order correlations,thereby offering greater modeling flexibility.In particular,we introduce three types of hypergraph computation methods:①hypergraph structure modeling,②hypergraph semantic computing,and③efficient hypergraph computing.We then specify how to adopt hypergraph computation in practice by focusing on specific tasks such as three-dimensional(3D)object recognition,revealing that hypergraph computation can reduce the data requirement by 80%while achieving comparable performance or improve the performance by 52%given the same data,compared with a traditional data-based method.A comprehensive overview of the applications of hypergraph computation in diverse domains,such as intelligent medicine and computer vision,is also provided.Finally,we introduce an open-source deep learning library,DeepHypergraph(DHG),which can serve as a tool for the practical usage of hypergraph computation.
文摘An edge coloring of hypergraph H is a function such that holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by . Erdös, Faber and Lovász proposed a famous conjecture that holds for any loopless linear hypergraph H with n vertices. In this paper, we show that is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021.
基金This work was supported by the National Natural Science Foundation of China(62073087,62071132,61973090).
文摘Deep matrix factorization(DMF)has been demonstrated to be a powerful tool to take in the complex hierarchical information of multi-view data(MDR).However,existing multiview DMF methods mainly explore the consistency of multi-view data,while neglecting the diversity among different views as well as the high-order relationships of data,resulting in the loss of valuable complementary information.In this paper,we design a hypergraph regularized diverse deep matrix factorization(HDDMF)model for multi-view data representation,to jointly utilize multi-view diversity and a high-order manifold in a multilayer factorization framework.A novel diversity enhancement term is designed to exploit the structural complementarity between different views of data.Hypergraph regularization is utilized to preserve the high-order geometry structure of data in each view.An efficient iterative optimization algorithm is developed to solve the proposed model with theoretical convergence analysis.Experimental results on five real-world data sets demonstrate that the proposed method significantly outperforms stateof-the-art multi-view learning approaches.
文摘Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively.
基金supported by the National Natural Science Foundation of China (No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Jiangsu Provincial Key Research and Development Program (No.BE2021636),(ZJ),(http://kxjst.jiangsu.gov.cn/)+1 种基金the Science and Technology Project of Changzhou City (No.CE20205056),(ZJ),(http://kjj.changzhou.gov.cn/)by Qing Lan Project of Jiangsu Province (no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.
基金National Natural Science Foundation of China(No.62001098)Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232020D-33)。
文摘Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.
文摘Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better to envisage the upcoming workload for early detection of overload status,underload status and to trigger the migration at an appropriate point wherein enough number of resources are available.Though various statistical and machine learning approaches are widely applied for resource usage prediction,they often failed to handle the increase of non-linear CDC data.To overcome this issue,a novel Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory(CDB-LSTM)model is proposed.The CDB-LSTM adopts Helly property of Hypergraph and Savitzky–Golay(SG)filter to select informative samples and exclude noisy inference&outliers.The proposed approach optimizes resource usage prediction and reduces the number of migrations with minimal computa-tional complexity during live VM migration.Further,the proposed prediction approach implements the correlation co-efficient measure to select the appropriate destination server for VM migration.A Hypergraph based CDB-LSTM was vali-dated using Google cluster dataset and compared with state-of-the-art approaches in terms of various evaluation metrics.
文摘近年来,社会化推荐作为推荐算法之一被广泛应用于各大平台.由于引入了用户的社交信息,社会化推荐可以较好地缓解数据稀疏问题.然而,大部分社会化推荐难以高效地从原始信息中提取用户的有效信息,导致引入社会信息的同时也会引入大量噪声.为了解决上述问题,本文提出了SRBHL(Social Recommendation Based on Hypergraph embedding and Limited attention)模型,通过超图嵌入模块提取用户的历史行为信息和社交信息,以缓解原始目标用户数据稀疏问题,并结合有限注意力模块来过滤原始信息的噪声,最后将得到的有效好友信息用于推荐.在Yelp-Urbana、Yelp-Phoenix和Epinions3个真实数据集上的实验结果表明SRBHL模型相比其他的推荐算法表现更出色.此外,本文还对SRBHL模型进行了鲁棒性分析,并给出了模型最优参数的取值范围.
文摘针对多链式区块链采用主链最终共识机制,导致主链负载大,制约从链性能等问题,论文提出一种基于超图和MuSig2聚合签名的联盟链主从多链共识机制.首先根据超图理论,构建以横贯超图为主链,子超图为从链的联盟链主从多链架构;然后借鉴分治思想,结合“背书-排序-验证”的共识方式,构建分层分类共识机制,通过分类处理交易降低主链负载压力;最后构建基于MuSig2聚合签名的联盟链多方背书签名方法,提升背书签名的验证效率.性能分析表明:基于MuSig2聚合签名的联盟链多方背书签名安全可靠,基于超图和MuSig2聚合签名的分层分类共识机制具有强一致性和线性时间复杂度.实验结果表明:基于MuSig2聚合签名的多方背书方法的总效率是椭圆曲线数字签名算法(Elliptic Curve Digital Signature Algorithm,ECDSA)的1.55倍,分层分类共识机制能够提升12.5%的共识效率.该机制具有较高性能,可满足企业多样化业务需求.