'It is predicted that the total output of China’s health care industry in 2010, 2015, and 2020 will respectively realize such market sizes of 960, 2,480, and 5,720 billion yuan, with an annual growth rate of 20%,...'It is predicted that the total output of China’s health care industry in 2010, 2015, and 2020 will respectively realize such market sizes of 960, 2,480, and 5,720 billion yuan, with an annual growth rate of 20%, leaving huge room for development.' said展开更多
Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions f...Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors,chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications.展开更多
The rapid evolution of portable and wearable electronic devices has fueled the development of smart functional textiles that are able to conduct electricity,sense body movements,or store energy.One main challenge inhi...The rapid evolution of portable and wearable electronic devices has fueled the development of smart functional textiles that are able to conduct electricity,sense body movements,or store energy.One main challenge inhibiting the further development of functional textile-based electronics is the lack of robust functional fibers with suitable electrical,electrochemical and sensing functionalities.MXenes,an emerging family of two-dimensional(2D)materials,have shown to be promising candidates for producing functional fibers due to their exceptional electrical and electrochemical properties combined with solution processability.The unique ability of MXenes to readily form liquid crystal phases in various solvents has allowed them to generate additive-free fibers using a wet spinning process.In this work,we review the recent exciting developments in the fabrication of neat MXenes fibers and present a critical evaluation of practical challenges in MXenes processing that influence the macroscale material properties and the performance of the subsequent devices.We also provide our assessment for the future opportunities and challenges in producing MXene fibers to help pave the way for their widespread use in advanced wearable applications.展开更多
文摘'It is predicted that the total output of China’s health care industry in 2010, 2015, and 2020 will respectively realize such market sizes of 960, 2,480, and 5,720 billion yuan, with an annual growth rate of 20%, leaving huge room for development.' said
基金supported by the Priority Research Centers Program(No.2012-0006689)through the National Research Foundation(NRF)of Korea funded by the Ministry of Education,Science and Technology(MEST)the R&D program of MOTIE/KEIT[10064081,Devclopment of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]+3 种基金partial support from the National Research Foundation of Korea(No.NRF-2017K2A9A2A06013377,NRF-2017M3A7B4049466)the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050supported by KIST Project(Nos.2E26900,2E27630)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2016R1A6A3A03006491)
文摘Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors,chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(No.22105106)the Natural Science Foundation of Jiangsu Province of China(No.BK20210603)+1 种基金Nanjing Science and Technology Innovation Project for overseas Students,Start-up Funding from NUPTSF(No.NY221003)Research Grant from the Royal Society,UK(No.RGS\R1\221044).
文摘The rapid evolution of portable and wearable electronic devices has fueled the development of smart functional textiles that are able to conduct electricity,sense body movements,or store energy.One main challenge inhibiting the further development of functional textile-based electronics is the lack of robust functional fibers with suitable electrical,electrochemical and sensing functionalities.MXenes,an emerging family of two-dimensional(2D)materials,have shown to be promising candidates for producing functional fibers due to their exceptional electrical and electrochemical properties combined with solution processability.The unique ability of MXenes to readily form liquid crystal phases in various solvents has allowed them to generate additive-free fibers using a wet spinning process.In this work,we review the recent exciting developments in the fabrication of neat MXenes fibers and present a critical evaluation of practical challenges in MXenes processing that influence the macroscale material properties and the performance of the subsequent devices.We also provide our assessment for the future opportunities and challenges in producing MXene fibers to help pave the way for their widespread use in advanced wearable applications.