期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multimodal sentiment analysis for social media contents during public emergencies
1
作者 Tao Fan Hao Wang +2 位作者 Peng Wu Chen Ling Milad Taleby Ahvanooey 《Journal of Data and Information Science》 CSCD 2023年第3期61-87,共27页
Purpose:Nowadays,public opinions during public emergencies involve not only textual contents but also contain images.However,the existing works mainly focus on textual contents and they do not provide a satisfactory a... Purpose:Nowadays,public opinions during public emergencies involve not only textual contents but also contain images.However,the existing works mainly focus on textual contents and they do not provide a satisfactory accuracy of sentiment analysis,lacking the combination of multimodal contents.In this paper,we propose to combine texts and images generated in the social media to perform sentiment analysis.Design/methodology/approach:We propose a Deep Multimodal Fusion Model(DMFM),which combines textual and visual sentiment analysis.We first train word2vec model on a large-scale public emergency corpus to obtain semantic-rich word vectors as the input of textual sentiment analysis.BiLSTM is employed to generate encoded textual embeddings.To fully excavate visual information from images,a modified pretrained VGG16-based sentiment analysis network is used with the best-performed fine-tuning strategy.A multimodal fusion method is implemented to fuse textual and visual embeddings completely,producing predicted labels.Findings:We performed extensive experiments on Weibo and Twitter public emergency datasets,to evaluate the performance of our proposed model.Experimental results demonstrate that the DMFM provides higher accuracy compared with baseline models.The introduction of images can boost the performance of sentiment analysis during public emergencies.Research limitations:In the future,we will test our model in a wider dataset.We will also consider a better way to learn the multimodal fusion information.Practical implications:We build an efficient multimodal sentiment analysis model for the social media contents during public emergencies.Originality/value:We consider the images posted by online users during public emergencies on social platforms.The proposed method can present a novel scope for sentiment analysis during public emergencies and provide the decision support for the government when formulating policies in public emergencies. 展开更多
关键词 Public emergency Multimodal sentiment analysis Social platform textual sentiment analysis Visual sentiment analysis
下载PDF
Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images
2
作者 Jieyu An Wan Mohd Nazmee Wan Zainon Zhang Hao 《Computers, Materials & Continua》 SCIE EI 2023年第6期5801-5815,共15页
Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text... Targeted multimodal sentiment classification(TMSC)aims to identify the sentiment polarity of a target mentioned in a multimodal post.The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations,ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation,which can potentially influence the results of TMSC tasks.This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images(ITMSC)as a way to tackle these issues and improve the accu-racy of multimodal sentiment analysis.Specifically,the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations.Further,we propose a target-based attention module to capture the target-text relevance,an image-based attention module to capture the image-text relevance,and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted.Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets.Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance. 展开更多
关键词 Targeted sentiment analysis multimodal sentiment classification visual sentiment textual sentiment social media
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部