A closed but approximate formula of Green’s function for an arbitrary aggregate of cubic crystallites is given to derive the e?ective elastic sti?ness tensor of the polycrystal. This formula, which includes thr...A closed but approximate formula of Green’s function for an arbitrary aggregate of cubic crystallites is given to derive the e?ective elastic sti?ness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and ?ve texture coe?cients, accounts for the e?ects of the orientation distribution function (ODF) up to terms linear in the tex- ture coe?cients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy. Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe’s formula and Synge’s contour integral through numerical integration. As an applica- tion of Green’s function, we brie?y describe the procedure of deriving the e?ective elastic sti?ness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the ?nite element method and our e?ective elastic sti?ness tensor is made by an example.展开更多
基金Project supported by the Natural Science Foundation of Jiangxi Province (No. 0450035).
文摘A closed but approximate formula of Green’s function for an arbitrary aggregate of cubic crystallites is given to derive the e?ective elastic sti?ness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and ?ve texture coe?cients, accounts for the e?ects of the orientation distribution function (ODF) up to terms linear in the tex- ture coe?cients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy. Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe’s formula and Synge’s contour integral through numerical integration. As an applica- tion of Green’s function, we brie?y describe the procedure of deriving the e?ective elastic sti?ness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the ?nite element method and our e?ective elastic sti?ness tensor is made by an example.