This paper presents a supervised classification method of sonar image, which takes advantages of both multi-fractal theory and wavelet analysis. In the process of feature extraction, image transformation and wavelet d...This paper presents a supervised classification method of sonar image, which takes advantages of both multi-fractal theory and wavelet analysis. In the process of feature extraction, image transformation and wavelet decomposition are combined and a feature set based on multi-fractal dimension is obtained. In the part of classifier construction, the Learning Vector Quantization (LVQ) network is adopted as a classifier. Experiments of sonar image classification were carried out with satisfactory results, which verify the effectiveness of this method.展开更多
In this paper,a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced.This paper also introduces the application of a histogram of linear bipolar pattern f...In this paper,a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced.This paper also introduces the application of a histogram of linear bipolar pattern features(HLBP)for breast thermogram classification.Initially,breast tissues are separated by masking operation and filtered by Gr¨umwald–Letnikov fractional derivative-based Sobel mask to enhance the texture and rectify the noise.A novel hybrid feature set usingHLBP and other statistical feature sets is derived and reduced by principal component analysis.Radial basis function kernel-based support vector machine is employed for detecting the abnormality in the thermogram.The performance parameters are calculated using five-fold cross-validation scheme using MATLAB 2015a simulation software.The proposedmodel achieves the classification accuracy,sensitivity,specificity,and area under the curve of 94.44%,95.55%,92.22%,96.11%,respectively.A comparative investigation of different texture features with respect to fractional orderαto classify the breast malignancy is also presented.The proposed model is also compared with a few existing state-of-art schemes which verifies the efficacy of the model.Fractional orderαoffers extra adaptability in overcoming the limitations of thermal imaging techniques and assists radiologists in prior breast cancer detection.The proposed model is more generalized which can be used with different thermal image acquisition protocols and IoT based applications.展开更多
Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce ...Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%.展开更多
文摘This paper presents a supervised classification method of sonar image, which takes advantages of both multi-fractal theory and wavelet analysis. In the process of feature extraction, image transformation and wavelet decomposition are combined and a feature set based on multi-fractal dimension is obtained. In the part of classifier construction, the Learning Vector Quantization (LVQ) network is adopted as a classifier. Experiments of sonar image classification were carried out with satisfactory results, which verify the effectiveness of this method.
基金Praveen Agarwal,thanks to the SERB(Project TAR/2018/000001)DST(Projects DST/INT/DAAD/P-21/2019 and INT/RUS/RFBR/308)NBHM(DAE)(Project 02011/12/2020 NBHM(R.P)/RD II/7867).
文摘In this paper,a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced.This paper also introduces the application of a histogram of linear bipolar pattern features(HLBP)for breast thermogram classification.Initially,breast tissues are separated by masking operation and filtered by Gr¨umwald–Letnikov fractional derivative-based Sobel mask to enhance the texture and rectify the noise.A novel hybrid feature set usingHLBP and other statistical feature sets is derived and reduced by principal component analysis.Radial basis function kernel-based support vector machine is employed for detecting the abnormality in the thermogram.The performance parameters are calculated using five-fold cross-validation scheme using MATLAB 2015a simulation software.The proposedmodel achieves the classification accuracy,sensitivity,specificity,and area under the curve of 94.44%,95.55%,92.22%,96.11%,respectively.A comparative investigation of different texture features with respect to fractional orderαto classify the breast malignancy is also presented.The proposed model is also compared with a few existing state-of-art schemes which verifies the efficacy of the model.Fractional orderαoffers extra adaptability in overcoming the limitations of thermal imaging techniques and assists radiologists in prior breast cancer detection.The proposed model is more generalized which can be used with different thermal image acquisition protocols and IoT based applications.
文摘Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%.