The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,w...The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.展开更多
A bloom caused by a diatom, Thalassiosira curviseriata Takano (Bacillariophyta) , is recorded in the East China Sea for the first time in China during a red tide investigation cruise (MC2005 -2) from 27 March to 1...A bloom caused by a diatom, Thalassiosira curviseriata Takano (Bacillariophyta) , is recorded in the East China Sea for the first time in China during a red tide investigation cruise (MC2005 -2) from 27 March to 12 April 2005. This bloom was developed with the competition of Chaetoceros debilis and Skeletonema spp. The highest cell density of T. curviseriata, which has reached 1.27 × 10^6 cells/dm3, was found in the surface and middle water layers of Stas ZD, ZB in the East China Sea (27. 22°-29.48°N, 121.53° - 122. 98°E)in early spring in 2005. During the blooming period of T. curviseriata, the population with high cell density was found in the water area with temperature of 10 -15 ℃ and salinity of 29.0 - 33.5. The percentage of the predominant species, T. curviseriata, has reached 95.8% of total diatom cells at one time in the middle water layer. The morphological characteristics of T. curviseriata, were observed with light microscope (LM) and transmission electronic microscope (TEM). The cells are 5.0 - 12. 6 μm in diameter, connecting each other by mucilaginous thread to form spiral and curved chains. Description and LM and TEM images of T. curviseriata are presented. T. curviseriata is ecologically characterized by eurythermy and euryhalinity, and its population variation is affected mainly by silicate, the ratios of phosphorus to silicon and nitrogen to silicon.展开更多
Gene specific primers and DNA probe were designed based on the sequence of 18S rDNA cloned from the red tide alga Thalassiosira rotula. A real-time fluorescent quantitative PCR (RFQ - PCR) method was developed for q...Gene specific primers and DNA probe were designed based on the sequence of 18S rDNA cloned from the red tide alga Thalassiosira rotula. A real-time fluorescent quantitative PCR (RFQ - PCR) method was developed for quantitative detection of T. rotula. The RFQ - PCR assay data showed that the results obtained with the RFQ - PCR quite good agreement with those with the light microscope (LM) counting method, which suggested that the RFQ - PCR could be a useful method for red tide alga detection.展开更多
Phosphorus(P) is one of the key nutrients for the growth of phytoplankton. In this study, we used a method coupling label-free quantitation with liquid chromatography–mass spectrometry(LFQ–LC–MS/MS) to track th...Phosphorus(P) is one of the key nutrients for the growth of phytoplankton. In this study, we used a method coupling label-free quantitation with liquid chromatography–mass spectrometry(LFQ–LC–MS/MS) to track the change of relative protein abundance between P-replete and P-deficient treatments in a non-model diatom, Thalassiosira weissflogii. Out of the 631 proteins identified, 132 were found to have significant changes in abundance(〉1.5 folds) between the two treatments, especially those proteins involved in macromolecular biosynthesis pathways. For example, the up-regulation of sulfolipid biosynthesis protein in the P-deficient culture suggested a switch from using phospholipids to sulfolipids. In addition, the ribosome subunits and tRNA synthetases were down-regulated, which might explain the decrease in protein content in the P-deficient culture. A vacuolar sorting receptor homologous protein was found to be 9.2-folds up-regulated under P-deficiency, indicating an enhancement in the vacuolar sorting pathway for protein degradation. Our results show that T. weissflogii has sophisticated responses in multiple macromolecular metabolism pathways under P-deficiency, a mechanism which can be critical for this species to survive under various levels of P availability in the environment展开更多
In this study, biosilica of high purity was successfully prepared from marine diatom (Nitzschia closterium and Thalassiosira) biomass using an optimized novel method with acid washing treatment followed by thermal t...In this study, biosilica of high purity was successfully prepared from marine diatom (Nitzschia closterium and Thalassiosira) biomass using an optimized novel method with acid washing treatment followed by thermal treatment of the biomass. The optimal condition of the method was 2% diluted HCl washing and baking at 600℃. The SiO2 contents of N. closterium biosilica and Thalassiosira biosilica were 92.23% and 91.52%, respectively, which were both higher than that of diatomite biosilica. The SiO2 morphologies of both biosilica are typical amorphous silica. Besides, IV. closterium biosilica possessed micropores and fibers with a surface area of 59.81 m^2/g. And Thalassiosira biosilica possessed a mesoporous hierarchical skeleton with a surface area of 9.91 m^2/g. The results suggest that the biosilica samples obtained in this study present highly porous structures. The prepared porous biosilica material possesses great potential to be used as drug delivery carrier, biosensor, biocatalyst as well as adsorbent in the future.展开更多
We cultured different-sized fractions of dominant phytoplankton species, Skeletonema costatum, Chaetoceros curvisetus, and Thalassiosira nordenskioldii, collected in different sea areas in various seasons, and measure...We cultured different-sized fractions of dominant phytoplankton species, Skeletonema costatum, Chaetoceros curvisetus, and Thalassiosira nordenskioldii, collected in different sea areas in various seasons, and measured and compared their C, N, P, Si contents. The N content of these species is similar, while the C, P, and Si contents of S. costatum from eutrophic Changjiang (Yangtze River) estuary are higher than those from Jiaozhou Bay (JZB), particularly the content of Si. The C, N, P, and Si contents of cultured phytoplankton in JZB increase with size fraction augmentation, and the percentages of C, N, and P follow the same trend, while the percentage of Si remain constant. Moreover, S. costatum from small-sized fraction assimilated Si more easily than C. curvisetus and T. nordenskirldii, which is explained by the dominance of S. costatum under the conditions of low SiO3-Si concentration in JZB. The C, N, P, and Si contents of cultured S. costatum collected during summer and winter are higher, which is consistent with the phytoplankton blooming seasons in JZB. The SiO3-Si concentration of seawater during spring restrain the growth of phytoplankton, supported by the fact that the N, P, and Si contents and their ratios in cells of cultured S. costatum are low in spring season.展开更多
The presence of diatoms is accompanied by the production of a large amount of extracellular polymeric substances,which are mainly composed of carbohydrates.Transparent exopolymer particles(TEP)are a large class of ext...The presence of diatoms is accompanied by the production of a large amount of extracellular polymeric substances,which are mainly composed of carbohydrates.Transparent exopolymer particles(TEP)are a large class of extracellular polymeric substances with high stickiness that promotes the formation of aggregates and marine snow,which affects marine bio-carbon pump efficiency.The purpose of this research was to determine how temperature increases affect the allocation of cellular carbohydrates and the formation and aggregation of TEP.The results showed that the responses of two different diatom species(Thalassiosira weissflogii and Skeletonema marinoi)differed according to temperature.The cell density and chlorophyll a concentration of the former were not significantly correlated with temperature,while those of the latter were significantly decreased with increasing temperature.This indicates that the two species of diatom may have different heat tolerance ranges.A temperature increase will promote significant formation of TEP by both types of diatoms,including aggregation of S.marinoi as the temperature rises,meaning that the high temperature will produce an aggregate with a larger particle size and thus may increase the sedimentation rate of organic carbon.Moreover,the TEP aggregation of T.weissflogii did not increase;therefore,its particle size was smaller,and so it may remain on the sea surface at high temperatures for longer periods.These influences have a profound impact on the biogeochemical cycling of carbon.展开更多
The effects of nutrients on the fluorescence characteristics and biochemical composition of marine diatom Thalassiosira pseudonana 3H in light and dark cycles were investigated with continuous culture. The results sho...The effects of nutrients on the fluorescence characteristics and biochemical composition of marine diatom Thalassiosira pseudonana 3H in light and dark cycles were investigated with continuous culture. The results show that with the increase of nutrient deficiency, the ratio of enhanced fluorescence to fluorescence (Fd/F), cellular chloropyll-a and protein content of the algae decline, but the fluorescence yield (F/Chl) , DCMU enhanced fluorescence yield (Fd/Chl) , cellular carbohydrate content, carbohydrate/Chl, protein/Chl, carbohydrate/protein increase. The changing amplitude of each parameter is different at different nutrition status, sampling time and different light intensity.展开更多
Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20%of global carbon fixation and 40%of marine primary productivity;thus,they are essential for global carbon biogeochemical cycling and c...Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20%of global carbon fixation and 40%of marine primary productivity;thus,they are essential for global carbon biogeochemical cycling and climate.The availability of ten diatom genome sequences has facilitated evolutionary,biological and ecological research over the past decade;however,a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking.Here,we present a proteome map of the model marine diatom Thalassiosira pseudonana using high-resolution mass spectrometry combined with a proteogenomic strategy.In-depth proteomic profiling of three different growth phases and three nutrient-deficient samples identified 9526 proteins,accounting for~81%of the predicted protein-coding genes.Proteogenomic analysis identified 1235 novel genes,975 revised genes,104 splice variants and 234 single amino acid variants.Furthermore,our quantitative proteomic analysis experimentally demonstrated that a considerable number of novel genes were differentially translated under different nutrient conditions.These findings substantially improve the genome annotation of T.pseudonana and provide insights into new biological functions of diatoms.This relatively comprehensive diatom proteome catalog will complement available diatom genome and transcriptome data to advance biological and ecological research of marine diatoms.展开更多
基金The Key R&D Program of Zhejiang under contract No.2023C03120the Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+2 种基金the National Key Research and Development Program of China under contract No.2021YFC3101702the National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring Warning Project in the Changjiang EstuaryLong-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) Project under contract No.SZ2001。
文摘The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.
基金The Major State Basic Research Development Program ("973" Program) of China under contract Nos 2001CB409701 and 2005CB422305the Special Prophase Project of Fujian Science and Technology Major Program of China under contract No. 2005YZ1024the National Natural Science Foundation of China under contract Nos 40627001 and 40476055
文摘A bloom caused by a diatom, Thalassiosira curviseriata Takano (Bacillariophyta) , is recorded in the East China Sea for the first time in China during a red tide investigation cruise (MC2005 -2) from 27 March to 12 April 2005. This bloom was developed with the competition of Chaetoceros debilis and Skeletonema spp. The highest cell density of T. curviseriata, which has reached 1.27 × 10^6 cells/dm3, was found in the surface and middle water layers of Stas ZD, ZB in the East China Sea (27. 22°-29.48°N, 121.53° - 122. 98°E)in early spring in 2005. During the blooming period of T. curviseriata, the population with high cell density was found in the water area with temperature of 10 -15 ℃ and salinity of 29.0 - 33.5. The percentage of the predominant species, T. curviseriata, has reached 95.8% of total diatom cells at one time in the middle water layer. The morphological characteristics of T. curviseriata, were observed with light microscope (LM) and transmission electronic microscope (TEM). The cells are 5.0 - 12. 6 μm in diameter, connecting each other by mucilaginous thread to form spiral and curved chains. Description and LM and TEM images of T. curviseriata are presented. T. curviseriata is ecologically characterized by eurythermy and euryhalinity, and its population variation is affected mainly by silicate, the ratios of phosphorus to silicon and nitrogen to silicon.
基金The research was supported by the National Natural Science Foundation of China under contract No.40406028the National High Technology Research and Development Program of China under contract No.2001AA635090.
文摘Gene specific primers and DNA probe were designed based on the sequence of 18S rDNA cloned from the red tide alga Thalassiosira rotula. A real-time fluorescent quantitative PCR (RFQ - PCR) method was developed for quantitative detection of T. rotula. The RFQ - PCR assay data showed that the results obtained with the RFQ - PCR quite good agreement with those with the light microscope (LM) counting method, which suggested that the RFQ - PCR could be a useful method for red tide alga detection.
基金The National Natural Science Foundation of China(NSFC)under contract No.40925018the National Basic Research Program(973 Program)under contract No.2011CB403603
文摘Phosphorus(P) is one of the key nutrients for the growth of phytoplankton. In this study, we used a method coupling label-free quantitation with liquid chromatography–mass spectrometry(LFQ–LC–MS/MS) to track the change of relative protein abundance between P-replete and P-deficient treatments in a non-model diatom, Thalassiosira weissflogii. Out of the 631 proteins identified, 132 were found to have significant changes in abundance(〉1.5 folds) between the two treatments, especially those proteins involved in macromolecular biosynthesis pathways. For example, the up-regulation of sulfolipid biosynthesis protein in the P-deficient culture suggested a switch from using phospholipids to sulfolipids. In addition, the ribosome subunits and tRNA synthetases were down-regulated, which might explain the decrease in protein content in the P-deficient culture. A vacuolar sorting receptor homologous protein was found to be 9.2-folds up-regulated under P-deficiency, indicating an enhancement in the vacuolar sorting pathway for protein degradation. Our results show that T. weissflogii has sophisticated responses in multiple macromolecular metabolism pathways under P-deficiency, a mechanism which can be critical for this species to survive under various levels of P availability in the environment
基金Supported by the Public Science and Technology Research Funds Projects of Ocean,China(No.201305022)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province,China(No.2014A030310326)
文摘In this study, biosilica of high purity was successfully prepared from marine diatom (Nitzschia closterium and Thalassiosira) biomass using an optimized novel method with acid washing treatment followed by thermal treatment of the biomass. The optimal condition of the method was 2% diluted HCl washing and baking at 600℃. The SiO2 contents of N. closterium biosilica and Thalassiosira biosilica were 92.23% and 91.52%, respectively, which were both higher than that of diatomite biosilica. The SiO2 morphologies of both biosilica are typical amorphous silica. Besides, IV. closterium biosilica possessed micropores and fibers with a surface area of 59.81 m^2/g. And Thalassiosira biosilica possessed a mesoporous hierarchical skeleton with a surface area of 9.91 m^2/g. The results suggest that the biosilica samples obtained in this study present highly porous structures. The prepared porous biosilica material possesses great potential to be used as drug delivery carrier, biosensor, biocatalyst as well as adsorbent in the future.
基金Supported by the National Natural Science Foundation of China (No.40776043)National Natural Science Foundation of China for Creative Research Groups (No. 40821004)
文摘We cultured different-sized fractions of dominant phytoplankton species, Skeletonema costatum, Chaetoceros curvisetus, and Thalassiosira nordenskioldii, collected in different sea areas in various seasons, and measured and compared their C, N, P, Si contents. The N content of these species is similar, while the C, P, and Si contents of S. costatum from eutrophic Changjiang (Yangtze River) estuary are higher than those from Jiaozhou Bay (JZB), particularly the content of Si. The C, N, P, and Si contents of cultured phytoplankton in JZB increase with size fraction augmentation, and the percentages of C, N, and P follow the same trend, while the percentage of Si remain constant. Moreover, S. costatum from small-sized fraction assimilated Si more easily than C. curvisetus and T. nordenskirldii, which is explained by the dominance of S. costatum under the conditions of low SiO3-Si concentration in JZB. The C, N, P, and Si contents of cultured S. costatum collected during summer and winter are higher, which is consistent with the phytoplankton blooming seasons in JZB. The SiO3-Si concentration of seawater during spring restrain the growth of phytoplankton, supported by the fact that the N, P, and Si contents and their ratios in cells of cultured S. costatum are low in spring season.
基金supported by the National Natural Science Foundation of China(No.31500411)the Guangxi Zhuang Autonomous Region International Platform Project(No.2019AC17008)+4 种基金the Guangxi Beihai Science and Technology Research Focus(Nos.201995048202082021 and 2019D05)the U.S.National Science Foundation(No.OCE 0726369)the Special Fund for Asian Regional Cooperation‘2019 China-ASEAN Marine Science and Technology Cooperation Seminar Project’the China Asia-Pacific Economic Cooperation(APEC)Cooperation Fund Project‘APEC Typical Regional Coral Reef Ecosystem Comprehensive Assessment Technology and Management Cooperation Research’the‘Bilateral and Multilateral International Cooperation’Project of the Central Financial Allocation Program in 2019 and 2020。
文摘The presence of diatoms is accompanied by the production of a large amount of extracellular polymeric substances,which are mainly composed of carbohydrates.Transparent exopolymer particles(TEP)are a large class of extracellular polymeric substances with high stickiness that promotes the formation of aggregates and marine snow,which affects marine bio-carbon pump efficiency.The purpose of this research was to determine how temperature increases affect the allocation of cellular carbohydrates and the formation and aggregation of TEP.The results showed that the responses of two different diatom species(Thalassiosira weissflogii and Skeletonema marinoi)differed according to temperature.The cell density and chlorophyll a concentration of the former were not significantly correlated with temperature,while those of the latter were significantly decreased with increasing temperature.This indicates that the two species of diatom may have different heat tolerance ranges.A temperature increase will promote significant formation of TEP by both types of diatoms,including aggregation of S.marinoi as the temperature rises,meaning that the high temperature will produce an aggregate with a larger particle size and thus may increase the sedimentation rate of organic carbon.Moreover,the TEP aggregation of T.weissflogii did not increase;therefore,its particle size was smaller,and so it may remain on the sea surface at high temperatures for longer periods.These influences have a profound impact on the biogeochemical cycling of carbon.
文摘The effects of nutrients on the fluorescence characteristics and biochemical composition of marine diatom Thalassiosira pseudonana 3H in light and dark cycles were investigated with continuous culture. The results show that with the increase of nutrient deficiency, the ratio of enhanced fluorescence to fluorescence (Fd/F), cellular chloropyll-a and protein content of the algae decline, but the fluorescence yield (F/Chl) , DCMU enhanced fluorescence yield (Fd/Chl) , cellular carbohydrate content, carbohydrate/Chl, protein/Chl, carbohydrate/protein increase. The changing amplitude of each parameter is different at different nutrition status, sampling time and different light intensity.
基金This work was partially supported by research grants from the National Natural Science Foundation of China(Project No.42030404 and 41425021)the Ministry of Science and Technology of the People's Republic of China(Project No.2015CB954003)D-ZW was also supported by the Ten Thousand Talents Program for leading talents in science and technological innovation.
文摘Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20%of global carbon fixation and 40%of marine primary productivity;thus,they are essential for global carbon biogeochemical cycling and climate.The availability of ten diatom genome sequences has facilitated evolutionary,biological and ecological research over the past decade;however,a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking.Here,we present a proteome map of the model marine diatom Thalassiosira pseudonana using high-resolution mass spectrometry combined with a proteogenomic strategy.In-depth proteomic profiling of three different growth phases and three nutrient-deficient samples identified 9526 proteins,accounting for~81%of the predicted protein-coding genes.Proteogenomic analysis identified 1235 novel genes,975 revised genes,104 splice variants and 234 single amino acid variants.Furthermore,our quantitative proteomic analysis experimentally demonstrated that a considerable number of novel genes were differentially translated under different nutrient conditions.These findings substantially improve the genome annotation of T.pseudonana and provide insights into new biological functions of diatoms.This relatively comprehensive diatom proteome catalog will complement available diatom genome and transcriptome data to advance biological and ecological research of marine diatoms.