The construction of industrial parks under the civil-military integration strategy is based on the combination of military technology and civil technology. Such an industrial park is a new urban functional area produc...The construction of industrial parks under the civil-military integration strategy is based on the combination of military technology and civil technology. Such an industrial park is a new urban functional area produced in the context of civil-military integration. Compared with industrial parks in the usual sense, it pays more attenteon to scientific research, innovation, cooperation and communication. In this paper, through in-depth analyses of relevant literature and domestic actual situation, the industrial park's basic advantages and external environmental policies were interpreted, and the application prospect and practical significance of the current civil-military integration policy were analyzed based on the platform strategy of the civil-military integration industrial park. With R & D industrial parks as the object of study, this paper clarified the management of enterprises in this type of parks and the support provided by the parks, sorted out the industrial park planning plan under the civil-military integration strategy in accordance with the current economic situation and policy orientation, and finally reached the conclusion that the construction of the construction of R & D industrial parks under the civil-military integration strategy is a new growth point that will drive the deepening reform of the national economy and the sustained development of the national economy.展开更多
El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope...El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning ...As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning carbon-based semiconductor technology has become one of the most disruptive technologies in the post-Moore era.As one-dimensional nanomaterials,carbon nanotubes(CNTs)are far superior to silicon at the same technology nodes of FETs because of their excellent electrical transport and scaling properties,rendering them the most competitive material in the next-generation ICs technology.However,certain challenges impede the industrialization of CNTs,particularly in terms of material preparation,which significantly hinders the development of CNT-based ICs.Focusing on CNT-based ICs technology,this review summarizes its main technical status,development trends,existing challenges,and future development directions.展开更多
We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on ...We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).展开更多
Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domai...Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domains without disturbing their quantum properties,nonlinear frequency conversion,typically steered with the quadratic(χ2)process,should be considered.Furthermore,another degree of freedom in steering the spatial modes during theχ2 process,with unprecedent mode intensity is proposed here by modulating the lithium niobate(LN)waveguide-based inter-mode quasi-phasematching conditions with both temperature and wavelength parameters.Under high incident light intensities(25 and 27.8 dBm for the pump and the signal lights,respectively),mode conversion at the sum-frequency wavelength with sufficient high output power(−7–8 dBm)among the TM01,TM10,and TM00 modes is realized automatically with characterized broad temperature(ΔT≥8°C)and wavelength windows(Δλ≥1 nm),avoiding the previous efforts in carefully preparing the signal or pump modes.The results prove that high-intensity spatial modes can be prepared at arbitrary transparent wavelength of theχ2 media toward on-chip integration,which facilitates the development of chip-based communication and quantum information systems because spatial correlations can be applied to generate hyperentangled states and provide additional robustness in quantum error correction with the extended Hilbert space.展开更多
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra...The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.展开更多
Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induc...Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.展开更多
During Chinese New Year holiday,characteristic folk customs activities significantly stimulated local tourism consumption potential and the high-quality development of tourism economy by integrating,leading and empowe...During Chinese New Year holiday,characteristic folk customs activities significantly stimulated local tourism consumption potential and the high-quality development of tourism economy by integrating,leading and empowering local tourism projects.展开更多
This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate ...This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change.展开更多
Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted to find a mathematical representation to express quantum dynamics of the general form for a double-slit experiment. His intuition on several slits...Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted to find a mathematical representation to express quantum dynamics of the general form for a double-slit experiment. His intuition on several slits with several walls in terms of Lagrangian instead of Hamiltonian resulted in a magnificent work. It was known as Feynman Path Integrals in quantum physics, and a large part of the scientific community still considers them a heuristic tool that lacks a sound mathematical definition. This paper aims to refute this prejudice, by providing an extensive and self-contained description of the mathematical theory of Feynman Path Integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. About a hundred years after the beginning of modern physics, it was realized that light could in fact show behavioral characteristics of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same dual behavior, which was later extended to atoms and molecules. We shall follow the method of integration with some modifications to construct a generalized Lebesgue-Bochner-Stieltjes (LBS) integral of the form , where u is a bilinear operator acting in the product of Banach spaces, f is a Bochner summable function, and μ is a vector-valued measure. We will demonstrate that the Feynman Path Integral is consistent and can be justified mathematically with LBS integration approach.展开更多
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we...Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types.展开更多
BACKGROUND Sensory integration intervention is highly related to the child's effective interaction with the environment and the child's development.Currently,various sensory integration interventions are being...BACKGROUND Sensory integration intervention is highly related to the child's effective interaction with the environment and the child's development.Currently,various sensory integration interventions are being applied,but research methodological problems are arising due to unsystematic protocols.This study aims to present the optimal intervention protocol by presenting scientific standards for sensory integration intervention through meta-analysis.AIM To prove the effectiveness of sensory integration therapy,examine the latest trend of sensory integration studies in Korea,and provide clinical evidence for sensory integration therapies.METHODS The database of Korean search engines,including RISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studiesRISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studies.RESULTS Sensory integration intervention has been proven effective in children with cerebral palsy,autism spectrum disorder,attention deficit/hyperactivity disorder,developmental disorder,and intellectual disability in relation to the diagnosis of children.Regarding sensory integration therapies,1:1 individual treatment with a therapist or a therapy session lasting for 40 min was most effective.In terms of dependent variables,sensory integration therapy effectively promoted social skills,adaptive behavior,sensory processing,and gross motor and fine motor skills.CONCLUSION The results of this study may be used as therapeutic evidence for sensory integration intervention in the clinical field of occupational therapy for children,and can help to present standards for sensory integration intervention protocols.展开更多
It has historically been very difficult to trace the history of the westward transmission of Chinese medicine through the accounts of its protagonists. Many of the early scholars such as Jack Worsley, Dick Van Buren, ...It has historically been very difficult to trace the history of the westward transmission of Chinese medicine through the accounts of its protagonists. Many of the early scholars such as Jack Worsley, Dick Van Buren, and Joe Goodman were reluctant to divulge information about the source of their knowledge, or their professional qualifications. Others, such as John Shen and Hong Yuan-bain were early 20th century immigrants who transmitted highly personalized versions of acupuncture and Chinese medicine to select disciples. Eventually, a new class of scholars appeared, including names such as Ted Kaptchuk, Peter Deadman, Nigel Wiseman, William Morris, Peter Eckman, John Mc Donald, Charles Buck, and the late Giovanni Maciocia who looked for answers back in China, developed translation methodologies and terminology, compiled the main textbooks currently in use at TCM colleges, overcame enormous scholastic adversity, developed courses and pursued the regulation and accreditation of TCM in various countries. This special issue synopsizes the path towards the global acculturation of TCM over the last 50 years, the main protagonists, the enormous accomplishments they have achieved for the profession, their philosophy, their clinical perspectives and visions for the future.展开更多
Integrated traditional Chinese medicine(TCM)and Western medicine(WM)is a new medical science grounded in the knowledge bases of both TCM and WM,which then forms a unique modern medical system in China.Integrated TCM a...Integrated traditional Chinese medicine(TCM)and Western medicine(WM)is a new medical science grounded in the knowledge bases of both TCM and WM,which then forms a unique modern medical system in China.Integrated TCM and WM has a long history in China,and has made important achievements in the process of clinical diagnosis and treatment.However,the methodological defects in currently published clinical practice guidelines(CPGs)limit its development.The organic integration of TCM and WM is a deeper integration of TCM and WM.To realize the progression of"integration"to"organic integration",a targeted and standardized guideline development methodology is needed.Therefore,the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
Transportation infrastructure is crucial to China’s economic growth because it substantially contributes to the holistic development of rural primary,secondary,and tertiary industries.This study innovatively examines...Transportation infrastructure is crucial to China’s economic growth because it substantially contributes to the holistic development of rural primary,secondary,and tertiary industries.This study innovatively examines transportation infrastructure and urbanization levels to explore,both theoretically and empirically,their relationship with the holistic development of primary,secondary,and tertiary industries in rural China,and the mediating role of urbanization on this relationship.We employed fixed-effects models,the entropy weight approach,mixed regression,and generalized method of moments to analyze the data of 30 provinces across China from 2013 to 2020.The results indicate that the construction of transportation infrastructure directly fosters the collective advancement of such industries in rural areas and that urbanization partially mediates the transportation infrastructure-rural industry integration relationship.However,the western region shows disparities in the integrated development of these sectors.Further analysis reveals that foreign investments amplify the positive influence of transportation infrastructure on rural industry integration.Essentially,the enhancement of rural transportation infrastructure,promotion of urbanization,implementation of strategic planning,and strengthening of support mechanisms are crucial aspects in the comprehensive development of rural industries and the achievement of rural revitalization in China.展开更多
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ...Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.展开更多
文摘The construction of industrial parks under the civil-military integration strategy is based on the combination of military technology and civil technology. Such an industrial park is a new urban functional area produced in the context of civil-military integration. Compared with industrial parks in the usual sense, it pays more attenteon to scientific research, innovation, cooperation and communication. In this paper, through in-depth analyses of relevant literature and domestic actual situation, the industrial park's basic advantages and external environmental policies were interpreted, and the application prospect and practical significance of the current civil-military integration policy were analyzed based on the platform strategy of the civil-military integration industrial park. With R & D industrial parks as the object of study, this paper clarified the management of enterprises in this type of parks and the support provided by the parks, sorted out the industrial park planning plan under the civil-military integration strategy in accordance with the current economic situation and policy orientation, and finally reached the conclusion that the construction of the construction of R & D industrial parks under the civil-military integration strategy is a new growth point that will drive the deepening reform of the national economy and the sustained development of the national economy.
基金supported by the National Natural Science Foundation of China(NFSCGrant No.42030410)+2 种基金Laoshan Laboratory(No.LSKJ202202402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST.
文摘El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金supported by National Natural Science Foundation of China(Grant No.52022078)Shaanxi Provincial Key Research and Development Program(Grant No.2021ZDLGY10-02,2019ZDLGY01-09)。
文摘As the manufacturing process of silicon-based integrated circuits(ICs)approaches its physical limit,the quantum effect of silicon-based field-effect transistors(FETs)has become increasingly evident.And the burgeoning carbon-based semiconductor technology has become one of the most disruptive technologies in the post-Moore era.As one-dimensional nanomaterials,carbon nanotubes(CNTs)are far superior to silicon at the same technology nodes of FETs because of their excellent electrical transport and scaling properties,rendering them the most competitive material in the next-generation ICs technology.However,certain challenges impede the industrialization of CNTs,particularly in terms of material preparation,which significantly hinders the development of CNT-based ICs.Focusing on CNT-based ICs technology,this review summarizes its main technical status,development trends,existing challenges,and future development directions.
基金partially supported by the Fundamental Research Funds for the Central Universities(GK202207018)of China。
文摘We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).
基金financial supports from National Key Research and Development Program of China(2021YFB3602500)Self-deployment Project of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ101)National Natural Science Foundation of China(Grant Nos.62275247 and 61905246).
文摘Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domains without disturbing their quantum properties,nonlinear frequency conversion,typically steered with the quadratic(χ2)process,should be considered.Furthermore,another degree of freedom in steering the spatial modes during theχ2 process,with unprecedent mode intensity is proposed here by modulating the lithium niobate(LN)waveguide-based inter-mode quasi-phasematching conditions with both temperature and wavelength parameters.Under high incident light intensities(25 and 27.8 dBm for the pump and the signal lights,respectively),mode conversion at the sum-frequency wavelength with sufficient high output power(−7–8 dBm)among the TM01,TM10,and TM00 modes is realized automatically with characterized broad temperature(ΔT≥8°C)and wavelength windows(Δλ≥1 nm),avoiding the previous efforts in carefully preparing the signal or pump modes.The results prove that high-intensity spatial modes can be prepared at arbitrary transparent wavelength of theχ2 media toward on-chip integration,which facilitates the development of chip-based communication and quantum information systems because spatial correlations can be applied to generate hyperentangled states and provide additional robustness in quantum error correction with the extended Hilbert space.
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
文摘The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.62171312)the Tianjin Municipal Education Commission Scientific Research Project,China(Grant No.2020KJ114).
文摘Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.
文摘During Chinese New Year holiday,characteristic folk customs activities significantly stimulated local tourism consumption potential and the high-quality development of tourism economy by integrating,leading and empowering local tourism projects.
文摘This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change.
文摘Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted to find a mathematical representation to express quantum dynamics of the general form for a double-slit experiment. His intuition on several slits with several walls in terms of Lagrangian instead of Hamiltonian resulted in a magnificent work. It was known as Feynman Path Integrals in quantum physics, and a large part of the scientific community still considers them a heuristic tool that lacks a sound mathematical definition. This paper aims to refute this prejudice, by providing an extensive and self-contained description of the mathematical theory of Feynman Path Integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. About a hundred years after the beginning of modern physics, it was realized that light could in fact show behavioral characteristics of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same dual behavior, which was later extended to atoms and molecules. We shall follow the method of integration with some modifications to construct a generalized Lebesgue-Bochner-Stieltjes (LBS) integral of the form , where u is a bilinear operator acting in the product of Banach spaces, f is a Bochner summable function, and μ is a vector-valued measure. We will demonstrate that the Feynman Path Integral is consistent and can be justified mathematically with LBS integration approach.
基金supported by the National Natural Science Foundation of China (No.32070656)the Nanjing University Deng Feng Scholars Program+1 种基金the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions,China Postdoctoral Science Foundation funded project (No.2022M711563)Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB50)
文摘Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types.
文摘BACKGROUND Sensory integration intervention is highly related to the child's effective interaction with the environment and the child's development.Currently,various sensory integration interventions are being applied,but research methodological problems are arising due to unsystematic protocols.This study aims to present the optimal intervention protocol by presenting scientific standards for sensory integration intervention through meta-analysis.AIM To prove the effectiveness of sensory integration therapy,examine the latest trend of sensory integration studies in Korea,and provide clinical evidence for sensory integration therapies.METHODS The database of Korean search engines,including RISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studiesRISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studies.RESULTS Sensory integration intervention has been proven effective in children with cerebral palsy,autism spectrum disorder,attention deficit/hyperactivity disorder,developmental disorder,and intellectual disability in relation to the diagnosis of children.Regarding sensory integration therapies,1:1 individual treatment with a therapist or a therapy session lasting for 40 min was most effective.In terms of dependent variables,sensory integration therapy effectively promoted social skills,adaptive behavior,sensory processing,and gross motor and fine motor skills.CONCLUSION The results of this study may be used as therapeutic evidence for sensory integration intervention in the clinical field of occupational therapy for children,and can help to present standards for sensory integration intervention protocols.
文摘It has historically been very difficult to trace the history of the westward transmission of Chinese medicine through the accounts of its protagonists. Many of the early scholars such as Jack Worsley, Dick Van Buren, and Joe Goodman were reluctant to divulge information about the source of their knowledge, or their professional qualifications. Others, such as John Shen and Hong Yuan-bain were early 20th century immigrants who transmitted highly personalized versions of acupuncture and Chinese medicine to select disciples. Eventually, a new class of scholars appeared, including names such as Ted Kaptchuk, Peter Deadman, Nigel Wiseman, William Morris, Peter Eckman, John Mc Donald, Charles Buck, and the late Giovanni Maciocia who looked for answers back in China, developed translation methodologies and terminology, compiled the main textbooks currently in use at TCM colleges, overcame enormous scholastic adversity, developed courses and pursued the regulation and accreditation of TCM in various countries. This special issue synopsizes the path towards the global acculturation of TCM over the last 50 years, the main protagonists, the enormous accomplishments they have achieved for the profession, their philosophy, their clinical perspectives and visions for the future.
基金supported by the National Natural Science Foundation of China(82174230)the Fundamental Research Funds for the Central Universities(2042022kf1213)。
文摘Integrated traditional Chinese medicine(TCM)and Western medicine(WM)is a new medical science grounded in the knowledge bases of both TCM and WM,which then forms a unique modern medical system in China.Integrated TCM and WM has a long history in China,and has made important achievements in the process of clinical diagnosis and treatment.However,the methodological defects in currently published clinical practice guidelines(CPGs)limit its development.The organic integration of TCM and WM is a deeper integration of TCM and WM.To realize the progression of"integration"to"organic integration",a targeted and standardized guideline development methodology is needed.Therefore,the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
基金supported by 2023 Chongqing Education Commission Humanities and Social Sciences Research Planning Project[Grant No.23SKGH090]2023−2024 Higher Education Science Research Project of Chongqing Higher Education Association[Grant No.cqgj23037C].
文摘Transportation infrastructure is crucial to China’s economic growth because it substantially contributes to the holistic development of rural primary,secondary,and tertiary industries.This study innovatively examines transportation infrastructure and urbanization levels to explore,both theoretically and empirically,their relationship with the holistic development of primary,secondary,and tertiary industries in rural China,and the mediating role of urbanization on this relationship.We employed fixed-effects models,the entropy weight approach,mixed regression,and generalized method of moments to analyze the data of 30 provinces across China from 2013 to 2020.The results indicate that the construction of transportation infrastructure directly fosters the collective advancement of such industries in rural areas and that urbanization partially mediates the transportation infrastructure-rural industry integration relationship.However,the western region shows disparities in the integrated development of these sectors.Further analysis reveals that foreign investments amplify the positive influence of transportation infrastructure on rural industry integration.Essentially,the enhancement of rural transportation infrastructure,promotion of urbanization,implementation of strategic planning,and strengthening of support mechanisms are crucial aspects in the comprehensive development of rural industries and the achievement of rural revitalization in China.
文摘Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.