期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Diophantine equation x^3±(3~K)~3=Dy^2
1
作者 李复中 《Chinese Science Bulletin》 SCIE EI CAS 1995年第7期609-610,共2页
Ljunggren proved that the equations x^3+1=Dy^2, D】2, d|D, 3D, d is not a square (1) and x^3-1=Dy^2, d is not prime of the form 6l+1 (1)′have one positive integral solution at most. Ko Chao and Sun Chi proved that eq... Ljunggren proved that the equations x^3+1=Dy^2, D】2, d|D, 3D, d is not a square (1) and x^3-1=Dy^2, d is not prime of the form 6l+1 (1)′have one positive integral solution at most. Ko Chao and Sun Chi proved that eqs.(1) and(1)′both have no nontrivial integral solution. In this letter, we prove the following theorems. 展开更多
关键词 Dy^2 the diophantine equation x^3
原文传递
On the Diophantine Equation 1/x+1/y+1/z+1/w+1/(xyzw)=0
2
作者 张明志 《Acta Mathematica Sinica,English Series》 SCIE 1985年第3期221-224,共4页
Mordell asked for the integer solutions of(1/x)+(1/y)+(1/z)+(1/w)+(1/xyxw)=0.(1)In this paper,we give some parametrio solutions of (1)and prove that thegeneral equationsum form i=1 to n(1/x)i)+multiply from i=1 to n=1... Mordell asked for the integer solutions of(1/x)+(1/y)+(1/z)+(1/w)+(1/xyxw)=0.(1)In this paper,we give some parametrio solutions of (1)and prove that thegeneral equationsum form i=1 to n(1/x)i)+multiply from i=1 to n=1(n>1)(2) 展开更多
关键词 On the diophantine equation 1/x+1/y+1/z+1/w+1 xyzw
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部