: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern ...: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern Pacific Ocean basin. Emphasis is laid on the relations of the activity intensity and biochemical transformation rate of aerobic bacteria (iron bacteria, Thiobacillus thioparus, halobacteria and manganese—oxidizing bacteria) and anaerobic bacteria (sulphate—reducing bacteria, denitrifying bacteria, Thiobacillus denitrificans) with mineralization. The experimental research on the migration and accumulation of ore-forming elements caused by microbial and chemical actions shows that the microbes have changed the conditions of oxidation and reduction in the system, and their effect on the element precipitation is much stronger than the chemical actions and accelerates the enrichment of Fe and Ma It demonstrates that the microbes can change the environment to promote the accumulation of ore-forming elements, thus leading to indirect mineralization.展开更多
基金This paper is based on the results of project No. 49472111 of the National Natural Science Foundation of China and a major project of science and technology of the "Eighth Five-Year Plan" (1991-1995) as well as marine investigations of cruises DY85-1 and DY85-3.
文摘: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern Pacific Ocean basin. Emphasis is laid on the relations of the activity intensity and biochemical transformation rate of aerobic bacteria (iron bacteria, Thiobacillus thioparus, halobacteria and manganese—oxidizing bacteria) and anaerobic bacteria (sulphate—reducing bacteria, denitrifying bacteria, Thiobacillus denitrificans) with mineralization. The experimental research on the migration and accumulation of ore-forming elements caused by microbial and chemical actions shows that the microbes have changed the conditions of oxidation and reduction in the system, and their effect on the element precipitation is much stronger than the chemical actions and accelerates the enrichment of Fe and Ma It demonstrates that the microbes can change the environment to promote the accumulation of ore-forming elements, thus leading to indirect mineralization.