Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankin...Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankind's basic need to obtain resources and guarantee economic and social development.The first phase of deep earth exploration of China(SinoProbe)was carried out from 2008 to 2016 and tremendous results were achieved.In 2016,the China Geological Survey launched a Deep Geological Survey Project(also referred to as the Project)to continuously explore the deep Earth.Focusing on the national energy resources strategy,the Belt and Road Initiative,and major basic issues of the geological survey,the Project was carried out in Songliao Basin(an important energy base in China)and major geological boundaries and tectonic units including Qilian Mountains-Tianshan Mountains and Qinzhou-Hangzhou juncture belt.The purpose of it is to reveal the process,structure,and forming patterns of the deep ore deposits and petroleum reservoirs,clarify the evolutionary pattern and controlling factors of Mesozoic environmental climate,and discover deep fine structures of key orogens,basins,and mountains by comprehensive geophysical exploration and scientific drilling.Great achievements have been obtained after more than three years of efforts,including a cumulative 1552 km of deep seismic reflection profiles and magnetotelluric profiles,an ultra-deep continental scientific crilling well,a scientific drilling pilot hole,and a magnetotelluric array and a portable broadband seismic array,both of which cover South China.Moreover,significant progress has been made in ultra-deep drilling technology,deep oil and gas discovery in Songliao Basin,and basic geological issues of Qilian Orogen and Qinzhou-Hangzhou juncture belt in South China,greatly accelerating the deep earth exploration in China and further consolidating China's position as a power in deep earth exploration.展开更多
The SinoProbe Center of the China Geological Survey is a geosciences innovation center for deep geological surveys and deep process researches,which is also the national base for deep exploration and deep earth scienc...The SinoProbe Center of the China Geological Survey is a geosciences innovation center for deep geological surveys and deep process researches,which is also the national base for deep exploration and deep earth science researches in China. The center is mainly focused on deep explorations of the earth,deep geological surveys and fundamental researches on deep earth science.The main missions of the SinoProbe Center are to undertake research programs on deep earth structural and compositional exploration,technology research and development on deep earth exploration,exploitation and evaluation of deep oil and gas,deep mineral resources,deep geothermal energy,and underground space'exploration and utilization.展开更多
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geolog...Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.展开更多
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
The existing genetic models of the South China Sea(SCS)include an extrusion model of the Indochina Peninsula,a back-arc extension model,and a subduction and dragging model of the Proto-South China Sea(PSCS).However,no...The existing genetic models of the South China Sea(SCS)include an extrusion model of the Indochina Peninsula,a back-arc extension model,and a subduction and dragging model of the Proto-South China Sea(PSCS).However,none of these models has been universally accepted because they do not fully match a large number of geological phenomena and facts.By examining the regional tectonics and integrating them with measured data for the SCS,in this study,a back-arc spreading-sinistral shear model is proposed.It is suggested that the SCS is a back-arc basin formed by northward subduction of the PSCS and its formation was triggered by left-lateral strike-slip motion due to the northward drift of the Philippine Sea Plate.The left-lateral strike-slip fault on the western margin caused by the Indo-Eurasian collision changed the direction of the Southwest Sub-basin's spreading axis from nearly E–W to NE–SW,and subduction retreat caused the spreading ridge to jump southward.This study summarizes the evolution of the SCS and adjacent regions since the Late Mesozoic.展开更多
This study investigated water samples collected from the surface water and groundwater in Wuhan City,Hubei Province,China in different stages of the outbreak of the coronavirus disease 2019(hereinafter referred to as ...This study investigated water samples collected from the surface water and groundwater in Wuhan City,Hubei Province,China in different stages of the outbreak of the coronavirus disease 2019(hereinafter referred to as COVID-19)in the city,aiming to determine the distribution characteristics of antiviral drugs in the city’s waters.The results are as follows.The main hydrochemical type of surface water and groundwater in Wuhan was Ca-HCO3.The major chemical components in the groundwater had higher concentrations and spatial variability than those in the surface water.Two antiviral drugs and two glucocorticoids were detected in the surface water,groundwater,and sewage during the COVID-19 outbreak.Among them,chloroquine phosphate and cortisone had higher detection rates of 32.26%and 25.80%,respectively in all samples.The concentrations of residual drugs in East Lake were higher than those in other waters.The main drug detected in the waters in the later stage of the COVID-19 outbreak in Wuhan was chloroquine phosphate,whose detection rates in the surface water and the groundwater were 53.85%and 28.57%,respectively.Moreover,the detection rate and concentration of chloroquine phosphate were higher in East Lake than in Huangjia Lake.The groundwater containing chloroquine phosphate was mainly distributed along the river areas where the groundwater was highly vulnerable.The residual drugs in the surface water and the groundwater had lower concentrations in the late stage of the COVID-19 outbreak than in the middle of the outbreak,and they have not yet caused any negative impacts on the ecological environment.展开更多
During the whole 20th century in China, especially the latest 50 years, we have gotten much geological information about geological mapping, geophysics, geochemistry, mineral exploration, remote sensing, environmental...During the whole 20th century in China, especially the latest 50 years, we have gotten much geological information about geological mapping, geophysics, geochemistry, mineral exploration, remote sensing, environmental geology, hydrogeology, engineering geology and oceanic geology etc. by our geologists and explorers. All the information has been accumulated and can be used as a decision-making foundation for the future plan of geological survey. The spatial database of geological survey extents has been established by using computer technology. The database contained all kinds of exploration sections and collected about 160 000 records in this database. This paper introduces the data construction, contents and applying system of this database, and trys to let people know what kinds of geological survey were finished, when the exploration were carried out, and how and where you can get this information.展开更多
IntroductionAs a public institution directly affiliated to China Geological Survey, the DevelopmentResearch Center of China Geological Survey mainly undertakes the work for geologicalsurvey, development research, IT-a...IntroductionAs a public institution directly affiliated to China Geological Survey, the DevelopmentResearch Center of China Geological Survey mainly undertakes the work for geologicalsurvey, development research, IT-applied development and management support. It is alsoresponsible for accepting and safekeeping the geological archives and relevant service aswell as providing business support, technical guidance and related research on the strategicactions of ore-prospecting breakthrough.展开更多
With the approach of the 45th World Earth Day,China's Ministry of Land and Resources issued the status of the Chinese geological survey and environments on 22nd April 2013.Regional geological survey in 2013 achieved ...With the approach of the 45th World Earth Day,China's Ministry of Land and Resources issued the status of the Chinese geological survey and environments on 22nd April 2013.Regional geological survey in 2013 achieved new results-(why was oceanic in twice?) polar and oceanic expedition were fully completed,a national census of geography was begun,and the security capacity of mapping geographic information was enhanced.A new idea for integrated geological survey and scientific research was proposed to enhance marine geological surveys and to improve service capabilities.展开更多
The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoi...The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary event.The authors think that the North China Craton and the Yangtze Craton were possibly in different tectonic locations of the same continental block during the Proterozoic.展开更多
The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed rive...The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.展开更多
To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,S...To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,South China.The contents of Se in soils derived from granitoid and basalt are,respectively,0.19±0.12 mg/kg and 0.34±0.39 mg/kg,which are much higher than Se contents in granitoid and basalt.Selenium shows remarkable enrichment from granitoid and basalt to soils.The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg,which is significantly higher than that of basalt(0.0058±0.0039 mg/kg).Although soil derived from basalt shows higher Se contents,Se contents in rice samples,mobile fractions of Se in soils,and biological concentration factor(BCF)is similar or even lower than that from granitoid.Basalt consist of calcic plagioclase and pyroxene,and are much richer in Fe,Al,and Ca than granitoid.Correspondingly,the basalt-derived soils have higher goethite,hematite,kaolinite,cation exchange capacity(CEC)content,and higher p H than the granitoid-derived soils,which result in higher adsorption capacity for Se and relatively lower Se bioavailability.Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice.展开更多
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan...Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan formations;the middle subgroup is formed by Yemahe, Wenshuihe and Shicaohe formations;the upper subgroup consists of Songziyuan and Wagangxi formations. Stromatolites developed very well in the carbonate rocks of each subgroup in Shennongjia Group. Based on descriptions of stromatolites macrotypes and their characteristics, this paper studied the formation environments, discussed the relationship among types, sizes, abundance of stromatolites and sedimentary environment, and established the formation and development pattern of stromatolites. As a result, this research also reveals the paleoenvironment and paleoclimate during the period of the Shennongjia Group deposited, which is beneficial to the study of paleoenvironment, paleogeography and paleoclimate, stratigraphic succession and regional correlation of the northern edge of Yangtze block. Stromatolites of Shennongjia Group are mainly conical, columnar, domal, wavy, stratiform and stromatolite reefs. The columnar and conical stromatolites are well developed. Conical stromatolites are mainly monomers, with a variety of pyramidal types, ranging in diameter from a few millimeters to several meters and formed in the high energy subtidal zone and tidal lagoon environment. Most of the columnar stromatolites are medium to small sizes implied a wide and gentle slope environment at that time. Stratiform (including wavy) stromatolites are larger scales and extends far away and distributed most widely in almost every horizon in the carbonate rocks. Stratiform stromatolites can be formed in low energy environments such as subtidal and intertidal zones and supratidal belts. Wavy stromatolites often developed in the hydrodynamic energy condition from weak energy intertidal zone gradually strengthened to the below of the high energy supratidal. Although stromatolite reefs can be a single or multiform combination, they developed mainly consisted of laminar or small walled columnar and large domal stromatolites. Shicaohe Formation also partially developed large domical stromatolites, the depositional environment is from the upper intertidal to supratidal zone. Stromatolite in Shennongjia Group usually appears as a combination of “Stratiform (wavy)-dome-columnar-coniform ” or “stratiform-dome-coniform-columnar-dome-stratiform ” vertieally, which represents the seawater depth from shallower to deeper or from shallow to deep and then to shallow again. These phenomenons generally reflected a stable sea level and companied with a high frequency oscillation. Comprehensive researches on the stratigraphy, sedimentary facies, sedimentary environment and the stromatolite types and their characteristics in the Shennongjia Group indicated that the Shennongjia Area is located on a gentle slope of carbonate platform in the passive continental edge, generally, i.e., one of warm and humid climate shallow water zone or/and a cold-drought climate, and had been experienced with eustatic cycles during the Shennongjia Group deposited.展开更多
The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this be...The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood.NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts.The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities,respectively.In contrast,the Xing’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes.These blocks and terranes were separated by the Xinlin-Xiguitu,Heilongjiang,Nenjiang,and Solonker oceans from north to south,and these oceans closed during the Cambrian(ca.500 Ma),Late Silurian(ca.420 Ma),early Late Carboniferous(ca.320 Ma),and Late Permian to Middle Triassic(260-240 Ma),respectively,forming the Xinlin-Xiguitu,Mudanjiang-Yilan,Hegenshan-Heihe,Solonker-Linxi,and Changchun-Yanji suture zones.Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean(PAO),namely,the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans.The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west.The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south.The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner.A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO,which led to“soft collision”of tectonic units on each side,forming huge accretionary orogenic belts in central Asia.展开更多
Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle...Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme.As one of the typical Sturtian-Marinoan interglacial deposits,the Datangpo Formation was widely distributed in South China with shales continuously deposited.The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval.Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province.Based on measured episodicδ^(13)C_(org) perturbations,three positive shifts and three negative excursions are identified.Aδ^(13)C_(org)-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally.Meanwhile,theδ^(13)C_(org) vertical gradients changed dynamically throughout the formation.This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation,coinciding with the potential oxygenation.展开更多
The authors reassessed the taxonomic distinction of Iteravis huchzermeyeri and Gansus zheni,which are two species of Ornithuromorpha based on specimens from the same locality in western Liaoning and derive from the Je...The authors reassessed the taxonomic distinction of Iteravis huchzermeyeri and Gansus zheni,which are two species of Ornithuromorpha based on specimens from the same locality in western Liaoning and derive from the Jehol Biota.The detailed comparisons of the holotype and referred specimens of both species,reveal no anatomical features that distinguish these taxa as separate species.Some minor differences are considered to relate to ontogenetic or interspecific differences.The stratigraphic occurrence for both specimens is the Lower Cretaceous Jiufotang Formation.Accordingly,the authors conclude that Iteravis huchzermeyeri has priority,by 15 days,for this taxon and that Gansus zheni is a junior synonym.The diagnosis of Iteravis huchzermeyeri is revised based on further study on all specimens referred to this species.Its generic distinction from Gansus is maintained thereby removing a potential genus-level correlation linking Xiagou Formation in Gansu Province with the Jiufotang Formation in Liaoning Province.展开更多
In order to figure out the redox conditions and paleo-sedimentary environment of the Middle Devonian shales in the northwest of Guizhong Depression,the trace element analysis was conducted on the Middle Devonian cores...In order to figure out the redox conditions and paleo-sedimentary environment of the Middle Devonian shales in the northwest of Guizhong Depression,the trace element analysis was conducted on the Middle Devonian cores(320.35–938.50 m)of the typical shale gas investigation well(GY-1)at a 1.50 m sampling interval through X-ray fluorescence spectroscopy(XRF)and inductively coupled plasma mass spectrometry(ICP-MS).According to the test result,the average values of V/(V+Ni),V/Cr and Ni/Co in Nabiao formation(Fm.)are larger than 0.67,4.65 and 7.71 respectively,and Nabiao Fm.is rich in biological assemblages such as tabasheer,ammonite,etc.These evidences indicate the rising sea level rose relatively in the sedimentation period of Nabiao Fm.and a deepwater shelf environment,which was favorable for the preservation of organic matters.The V/(V+Ni),V/Cr and Ni/Co in Luofu Fm.and Tangting Fm.are 0.38–0.65,0.73–4.10 and 3.70–6.72 respectively,indicating that the sea level dropped relatively in their sedimentation period,during which the water bodies became shallow,and the sedimentary environment was a weak oxidizing shallow water shelf environment.In addition,the variation of TOC has a high correlation with the enrichment degree of Ba element,indicating the favorable conditions for the enrichment and preservation of organic matters under an oxygen-deficient environment.Moreover,according to the identification of trace element indexes,the northwest of Guizhong Depression experienced the sedimentary cycle of relative rise to relative fall of sea level from bottom to top in the Middle Devonian sedimentation period.The relative sea level rose to the highest in the sedimentation period of Nabiao Fm.,in which the organic-rich shales with stable thickness and high organic content were deposited.Hence,the Nabiao Fm.could be regarded as the favorable exploration target interval in this area.展开更多
The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and e...The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and evolution process.The SCS has experienced complex geological processes including continental lithospheric breakup,seafloor spreading and oceanic crust subduction,which leads debates for decades.However,there are still no clear answers regarding to the following aspects:the crustal and Moho structure,the structure of the continent-ocean transition zone,the formation and evolution process and geodynamic mechanism,and deep processes and their coupling relationships with the petroliferous basins in the SCS.Under the guidance of the“Deep-Earth”science and technology innovation strategy of the Ministry of Natural Resources,deep structural and comprehensive geological research are carried out in the SCS.Geophysical investigations such as long array-large volume deep reflection seismic,gravity,magnetism and ocean bottom seismometer are carried out.The authors proposed that joint gravitymagnetic-seismic inversion should be used to obtain deep crustal information in the SCS and construct high resolution deep structural sections in different regions of the SCS.This paper systematically interpreted the formation and evolution of the SCS and explored the coupling relationship between deep structure and evolution of Mesozoic-Cenozoic basins in the SCS.It is of great significance for promoting the geosystem scientific research and resource exploration of the SCS.展开更多
The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution.The whole-rock Sr-Nd-Pb-Hf isotopes...The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution.The whole-rock Sr-Nd-Pb-Hf isotopes are attributed to a two-component mixing between depleted and enriched mantle sources,while the major element variations are controlled by the fractional crystallization of olivine and clinopyroxene.However,in this study,the new Os isotopic data proposes an opposite model for the Cenozoic basalts in northern marginal region of the North China Craton.In this model,the Jining basalts were contaminated by the Archean mafic rocks during the magma storage and ascent.The crustal contamination process is supported by(1)the highly radiogenic Os isotopic compositions,and(2)the positive correlation between 187Os/188Os and 1/Os of the Jining basalts.By modeling the Os isotopic composition of the basalts,an incorporation of<10%mafic granulites/amphibolites to the parental magma can successfully explain the initial values of highly radiogenic Os.In contrast,the unradiogenic and uniform Os isotopic compositions of the Chifeng basalts suggest negligible crustal contamination.Os isotopic data acts as an indicator of crustal contamination during magma evolution,providing us a novel insight into the evolution of the intra-continental OIB-like basalts worldwide.展开更多
基金This work was co-supported by the China Geological Survey project(DD20190012,DD20190011,DD20190010,DD20160207,D20160209,DD2016008,DD20160082 and DD20189702).
文摘Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankind's basic need to obtain resources and guarantee economic and social development.The first phase of deep earth exploration of China(SinoProbe)was carried out from 2008 to 2016 and tremendous results were achieved.In 2016,the China Geological Survey launched a Deep Geological Survey Project(also referred to as the Project)to continuously explore the deep Earth.Focusing on the national energy resources strategy,the Belt and Road Initiative,and major basic issues of the geological survey,the Project was carried out in Songliao Basin(an important energy base in China)and major geological boundaries and tectonic units including Qilian Mountains-Tianshan Mountains and Qinzhou-Hangzhou juncture belt.The purpose of it is to reveal the process,structure,and forming patterns of the deep ore deposits and petroleum reservoirs,clarify the evolutionary pattern and controlling factors of Mesozoic environmental climate,and discover deep fine structures of key orogens,basins,and mountains by comprehensive geophysical exploration and scientific drilling.Great achievements have been obtained after more than three years of efforts,including a cumulative 1552 km of deep seismic reflection profiles and magnetotelluric profiles,an ultra-deep continental scientific crilling well,a scientific drilling pilot hole,and a magnetotelluric array and a portable broadband seismic array,both of which cover South China.Moreover,significant progress has been made in ultra-deep drilling technology,deep oil and gas discovery in Songliao Basin,and basic geological issues of Qilian Orogen and Qinzhou-Hangzhou juncture belt in South China,greatly accelerating the deep earth exploration in China and further consolidating China's position as a power in deep earth exploration.
文摘The SinoProbe Center of the China Geological Survey is a geosciences innovation center for deep geological surveys and deep process researches,which is also the national base for deep exploration and deep earth science researches in China. The center is mainly focused on deep explorations of the earth,deep geological surveys and fundamental researches on deep earth science.The main missions of the SinoProbe Center are to undertake research programs on deep earth structural and compositional exploration,technology research and development on deep earth exploration,exploitation and evaluation of deep oil and gas,deep mineral resources,deep geothermal energy,and underground space'exploration and utilization.
基金supported by the National Natural Science Foundation of China(41977258)the National Key Research and Development Program of China(2017YFC1501005 and 2018YFC1504704)。
文摘Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.
基金funded by the projects of the China Geological Survey(DD20160138,GZH201300502,DD20190378)the Major Special Project for talent team introduction of the Southern Marine Science and Engineering Guang Dong Laboratory(Guang Zhou)(GML2019ZD0207)。
文摘The existing genetic models of the South China Sea(SCS)include an extrusion model of the Indochina Peninsula,a back-arc extension model,and a subduction and dragging model of the Proto-South China Sea(PSCS).However,none of these models has been universally accepted because they do not fully match a large number of geological phenomena and facts.By examining the regional tectonics and integrating them with measured data for the SCS,in this study,a back-arc spreading-sinistral shear model is proposed.It is suggested that the SCS is a back-arc basin formed by northward subduction of the PSCS and its formation was triggered by left-lateral strike-slip motion due to the northward drift of the Philippine Sea Plate.The left-lateral strike-slip fault on the western margin caused by the Indo-Eurasian collision changed the direction of the Southwest Sub-basin's spreading axis from nearly E–W to NE–SW,and subduction retreat caused the spreading ridge to jump southward.This study summarizes the evolution of the SCS and adjacent regions since the Late Mesozoic.
基金This research was jointly by the China Geological Survey Project Multi-Factor Urban Geological Survey of Wuhan(DD20190282)Survey and Evaluation of Riverside Urban Geological Safety in Wuhan(DD20221734).
文摘This study investigated water samples collected from the surface water and groundwater in Wuhan City,Hubei Province,China in different stages of the outbreak of the coronavirus disease 2019(hereinafter referred to as COVID-19)in the city,aiming to determine the distribution characteristics of antiviral drugs in the city’s waters.The results are as follows.The main hydrochemical type of surface water and groundwater in Wuhan was Ca-HCO3.The major chemical components in the groundwater had higher concentrations and spatial variability than those in the surface water.Two antiviral drugs and two glucocorticoids were detected in the surface water,groundwater,and sewage during the COVID-19 outbreak.Among them,chloroquine phosphate and cortisone had higher detection rates of 32.26%and 25.80%,respectively in all samples.The concentrations of residual drugs in East Lake were higher than those in other waters.The main drug detected in the waters in the later stage of the COVID-19 outbreak in Wuhan was chloroquine phosphate,whose detection rates in the surface water and the groundwater were 53.85%and 28.57%,respectively.Moreover,the detection rate and concentration of chloroquine phosphate were higher in East Lake than in Huangjia Lake.The groundwater containing chloroquine phosphate was mainly distributed along the river areas where the groundwater was highly vulnerable.The residual drugs in the surface water and the groundwater had lower concentrations in the late stage of the COVID-19 outbreak than in the middle of the outbreak,and they have not yet caused any negative impacts on the ecological environment.
文摘During the whole 20th century in China, especially the latest 50 years, we have gotten much geological information about geological mapping, geophysics, geochemistry, mineral exploration, remote sensing, environmental geology, hydrogeology, engineering geology and oceanic geology etc. by our geologists and explorers. All the information has been accumulated and can be used as a decision-making foundation for the future plan of geological survey. The spatial database of geological survey extents has been established by using computer technology. The database contained all kinds of exploration sections and collected about 160 000 records in this database. This paper introduces the data construction, contents and applying system of this database, and trys to let people know what kinds of geological survey were finished, when the exploration were carried out, and how and where you can get this information.
文摘IntroductionAs a public institution directly affiliated to China Geological Survey, the DevelopmentResearch Center of China Geological Survey mainly undertakes the work for geologicalsurvey, development research, IT-applied development and management support. It is alsoresponsible for accepting and safekeeping the geological archives and relevant service aswell as providing business support, technical guidance and related research on the strategicactions of ore-prospecting breakthrough.
文摘With the approach of the 45th World Earth Day,China's Ministry of Land and Resources issued the status of the Chinese geological survey and environments on 22nd April 2013.Regional geological survey in 2013 achieved new results-(why was oceanic in twice?) polar and oceanic expedition were fully completed,a national census of geography was begun,and the security capacity of mapping geographic information was enhanced.A new idea for integrated geological survey and scientific research was proposed to enhance marine geological surveys and to improve service capabilities.
基金financially supported by the project entitled 1∶50000 Regional Geological Survey of Samaki,Yinmin,Guicheng,and Shugu Sheets in Yunnan Province(D201905)organized by the Land and Resources Department of Yunnan ProvinceTraining Object Project of technological innovation talents in Yunnan Province(202205AD160073)+2 种基金the project entitled“1∶50000 Regional Geological Survey of Dazhuang,Fabiao,Ditu,and Dianzhong Sheets in Yunnan Province”(S53A00722001048-007)“Joint Foundation Project between Yunnan Science and Technology Department and Yunnan University”(CY21624103)the project entitled“Area Summary and Service Product Development of Regional Geological Surveys in Yunnan Province”initiated by the China Geological Survey(121201102000150012-02)。
文摘The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary event.The authors think that the North China Craton and the Yangtze Craton were possibly in different tectonic locations of the same continental block during the Proterozoic.
基金supported by the National Natural Science Foundation of China(41977258)the China Geological Survey(DD20190310,DD20221761)the National Key R&D Program of China(2018YFC1504704).
文摘The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.
基金financially supported by the projects of the China Geological Survey(DD20190518,DD20190527)。
文摘To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,South China.The contents of Se in soils derived from granitoid and basalt are,respectively,0.19±0.12 mg/kg and 0.34±0.39 mg/kg,which are much higher than Se contents in granitoid and basalt.Selenium shows remarkable enrichment from granitoid and basalt to soils.The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg,which is significantly higher than that of basalt(0.0058±0.0039 mg/kg).Although soil derived from basalt shows higher Se contents,Se contents in rice samples,mobile fractions of Se in soils,and biological concentration factor(BCF)is similar or even lower than that from granitoid.Basalt consist of calcic plagioclase and pyroxene,and are much richer in Fe,Al,and Ca than granitoid.Correspondingly,the basalt-derived soils have higher goethite,hematite,kaolinite,cation exchange capacity(CEC)content,and higher p H than the granitoid-derived soils,which result in higher adsorption capacity for Se and relatively lower Se bioavailability.Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice.
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
基金This research was co-supported by the National Key Research and Development Program of China (2016YFC0601001),the National Natural Science Foundation of China (41472082)China Geological Survey Projects (DD20160120-01)+1 种基金Globe Geopark of Shennongjia. We are grateful to the leaders of Shennongjia National Park and Mr. Zhixian Wang,Quan Zhong gave great assistances and warmly aidsthe field survey was under careful direction by Mr. Lesheng Qu from Hubei Geological Survey,Mr. Yuansheng Geng from Institute of Geology,CAGS. Sincere thanks are also given Mr. Zejiu Wang,Xin Shang and Mrs. Xiulan Ma from Chinese Academy of Geological Sciences (CAGS) and All China Commission of Stratigraphy.
文摘Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan formations;the middle subgroup is formed by Yemahe, Wenshuihe and Shicaohe formations;the upper subgroup consists of Songziyuan and Wagangxi formations. Stromatolites developed very well in the carbonate rocks of each subgroup in Shennongjia Group. Based on descriptions of stromatolites macrotypes and their characteristics, this paper studied the formation environments, discussed the relationship among types, sizes, abundance of stromatolites and sedimentary environment, and established the formation and development pattern of stromatolites. As a result, this research also reveals the paleoenvironment and paleoclimate during the period of the Shennongjia Group deposited, which is beneficial to the study of paleoenvironment, paleogeography and paleoclimate, stratigraphic succession and regional correlation of the northern edge of Yangtze block. Stromatolites of Shennongjia Group are mainly conical, columnar, domal, wavy, stratiform and stromatolite reefs. The columnar and conical stromatolites are well developed. Conical stromatolites are mainly monomers, with a variety of pyramidal types, ranging in diameter from a few millimeters to several meters and formed in the high energy subtidal zone and tidal lagoon environment. Most of the columnar stromatolites are medium to small sizes implied a wide and gentle slope environment at that time. Stratiform (including wavy) stromatolites are larger scales and extends far away and distributed most widely in almost every horizon in the carbonate rocks. Stratiform stromatolites can be formed in low energy environments such as subtidal and intertidal zones and supratidal belts. Wavy stromatolites often developed in the hydrodynamic energy condition from weak energy intertidal zone gradually strengthened to the below of the high energy supratidal. Although stromatolite reefs can be a single or multiform combination, they developed mainly consisted of laminar or small walled columnar and large domal stromatolites. Shicaohe Formation also partially developed large domical stromatolites, the depositional environment is from the upper intertidal to supratidal zone. Stromatolite in Shennongjia Group usually appears as a combination of “Stratiform (wavy)-dome-columnar-coniform ” or “stratiform-dome-coniform-columnar-dome-stratiform ” vertieally, which represents the seawater depth from shallower to deeper or from shallow to deep and then to shallow again. These phenomenons generally reflected a stable sea level and companied with a high frequency oscillation. Comprehensive researches on the stratigraphy, sedimentary facies, sedimentary environment and the stromatolite types and their characteristics in the Shennongjia Group indicated that the Shennongjia Area is located on a gentle slope of carbonate platform in the passive continental edge, generally, i.e., one of warm and humid climate shallow water zone or/and a cold-drought climate, and had been experienced with eustatic cycles during the Shennongjia Group deposited.
基金financially supported by the National Natural Science Foundation of China(42130305 and 42002227)project of the China Geological Survey(DD20190039-04,DD20179402,DD20190360 and DD20221632)+2 种基金National Key R&D Program of China(2017YFC0601300 and 2013CB429802)Taishan Scholars(ts20190918)Qingdao Leading Innovation Talents(19-3-2-19-zhc).
文摘The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood.NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts.The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities,respectively.In contrast,the Xing’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes.These blocks and terranes were separated by the Xinlin-Xiguitu,Heilongjiang,Nenjiang,and Solonker oceans from north to south,and these oceans closed during the Cambrian(ca.500 Ma),Late Silurian(ca.420 Ma),early Late Carboniferous(ca.320 Ma),and Late Permian to Middle Triassic(260-240 Ma),respectively,forming the Xinlin-Xiguitu,Mudanjiang-Yilan,Hegenshan-Heihe,Solonker-Linxi,and Changchun-Yanji suture zones.Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean(PAO),namely,the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans.The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west.The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south.The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner.A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO,which led to“soft collision”of tectonic units on each side,forming huge accretionary orogenic belts in central Asia.
基金Special thanks to Erik Tihelka for improving the English.This study was supported by the National Natural Science Foundation of China(41602126)the China Geological Survey(DD20160018,DD20221661)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0706)Liu Bao-jun Academician Research Funds subsidized by Chengdu Center of China Geological Survey.
文摘Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme.As one of the typical Sturtian-Marinoan interglacial deposits,the Datangpo Formation was widely distributed in South China with shales continuously deposited.The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval.Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province.Based on measured episodicδ^(13)C_(org) perturbations,three positive shifts and three negative excursions are identified.Aδ^(13)C_(org)-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally.Meanwhile,theδ^(13)C_(org) vertical gradients changed dynamically throughout the formation.This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation,coinciding with the potential oxygenation.
基金This work was supported by projects from the National Natural Science Foundation of China(41872018,41672019)the China Geological Survey(DD20190602)awarded to Xu-ri Wang.
文摘The authors reassessed the taxonomic distinction of Iteravis huchzermeyeri and Gansus zheni,which are two species of Ornithuromorpha based on specimens from the same locality in western Liaoning and derive from the Jehol Biota.The detailed comparisons of the holotype and referred specimens of both species,reveal no anatomical features that distinguish these taxa as separate species.Some minor differences are considered to relate to ontogenetic or interspecific differences.The stratigraphic occurrence for both specimens is the Lower Cretaceous Jiufotang Formation.Accordingly,the authors conclude that Iteravis huchzermeyeri has priority,by 15 days,for this taxon and that Gansus zheni is a junior synonym.The diagnosis of Iteravis huchzermeyeri is revised based on further study on all specimens referred to this species.Its generic distinction from Gansus is maintained thereby removing a potential genus-level correlation linking Xiagou Formation in Gansu Province with the Jiufotang Formation in Liaoning Province.
基金This article was supported by project of China Geological Survey“Guizhong-Nanpanjiang Depression shale gas geological survey”(DD20190088).
文摘In order to figure out the redox conditions and paleo-sedimentary environment of the Middle Devonian shales in the northwest of Guizhong Depression,the trace element analysis was conducted on the Middle Devonian cores(320.35–938.50 m)of the typical shale gas investigation well(GY-1)at a 1.50 m sampling interval through X-ray fluorescence spectroscopy(XRF)and inductively coupled plasma mass spectrometry(ICP-MS).According to the test result,the average values of V/(V+Ni),V/Cr and Ni/Co in Nabiao formation(Fm.)are larger than 0.67,4.65 and 7.71 respectively,and Nabiao Fm.is rich in biological assemblages such as tabasheer,ammonite,etc.These evidences indicate the rising sea level rose relatively in the sedimentation period of Nabiao Fm.and a deepwater shelf environment,which was favorable for the preservation of organic matters.The V/(V+Ni),V/Cr and Ni/Co in Luofu Fm.and Tangting Fm.are 0.38–0.65,0.73–4.10 and 3.70–6.72 respectively,indicating that the sea level dropped relatively in their sedimentation period,during which the water bodies became shallow,and the sedimentary environment was a weak oxidizing shallow water shelf environment.In addition,the variation of TOC has a high correlation with the enrichment degree of Ba element,indicating the favorable conditions for the enrichment and preservation of organic matters under an oxygen-deficient environment.Moreover,according to the identification of trace element indexes,the northwest of Guizhong Depression experienced the sedimentary cycle of relative rise to relative fall of sea level from bottom to top in the Middle Devonian sedimentation period.The relative sea level rose to the highest in the sedimentation period of Nabiao Fm.,in which the organic-rich shales with stable thickness and high organic content were deposited.Hence,the Nabiao Fm.could be regarded as the favorable exploration target interval in this area.
基金This study was financially supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0207,GML2019ZD0208)the China Geological Survey Program(DD20191007).
文摘The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and evolution process.The SCS has experienced complex geological processes including continental lithospheric breakup,seafloor spreading and oceanic crust subduction,which leads debates for decades.However,there are still no clear answers regarding to the following aspects:the crustal and Moho structure,the structure of the continent-ocean transition zone,the formation and evolution process and geodynamic mechanism,and deep processes and their coupling relationships with the petroliferous basins in the SCS.Under the guidance of the“Deep-Earth”science and technology innovation strategy of the Ministry of Natural Resources,deep structural and comprehensive geological research are carried out in the SCS.Geophysical investigations such as long array-large volume deep reflection seismic,gravity,magnetism and ocean bottom seismometer are carried out.The authors proposed that joint gravitymagnetic-seismic inversion should be used to obtain deep crustal information in the SCS and construct high resolution deep structural sections in different regions of the SCS.This paper systematically interpreted the formation and evolution of the SCS and explored the coupling relationship between deep structure and evolution of Mesozoic-Cenozoic basins in the SCS.It is of great significance for promoting the geosystem scientific research and resource exploration of the SCS.
基金This work was supported financially by Beijing Natural Science Foundation(8194073)the Science Foundation of China University of Petroleum,Beijing(2462017YJRC032 and 2462021YXZZ004)+1 种基金the Science Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(PRP/indep-4-1702)the National Natural Science Foundation of China(41872057 and 42002238).
文摘The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution.The whole-rock Sr-Nd-Pb-Hf isotopes are attributed to a two-component mixing between depleted and enriched mantle sources,while the major element variations are controlled by the fractional crystallization of olivine and clinopyroxene.However,in this study,the new Os isotopic data proposes an opposite model for the Cenozoic basalts in northern marginal region of the North China Craton.In this model,the Jining basalts were contaminated by the Archean mafic rocks during the magma storage and ascent.The crustal contamination process is supported by(1)the highly radiogenic Os isotopic compositions,and(2)the positive correlation between 187Os/188Os and 1/Os of the Jining basalts.By modeling the Os isotopic composition of the basalts,an incorporation of<10%mafic granulites/amphibolites to the parental magma can successfully explain the initial values of highly radiogenic Os.In contrast,the unradiogenic and uniform Os isotopic compositions of the Chifeng basalts suggest negligible crustal contamination.Os isotopic data acts as an indicator of crustal contamination during magma evolution,providing us a novel insight into the evolution of the intra-continental OIB-like basalts worldwide.