Absolute and relative gravity observations from 1998 -2010 from the China Crustal Movement Ob- servation Network, a major national scientific project, have been used to model the gravity field and its varia- tions ass...Absolute and relative gravity observations from 1998 -2010 from the China Crustal Movement Ob- servation Network, a major national scientific project, have been used to model the gravity field and its varia- tions associated with the April 14, 2010 Ms7.1 Yushu earthquake. The evolution of the regional gravity field and its relationship with seismicity before and after the Yushu earthquake are studied. The observed gravity changes are closely related to the active Ganzi-Yushu Fault, and gravity measurements can be used to observe the migration of material accompanying active faults and crustal tectonics. The dynamic variation of the gravity field reflects its evolution prior to and during the Yushu earthquake. The gravity measurements near its epicen- ter are as large as 80 × 10-s m/s2.and they show wave-like increases with time prior to the Yushu earth- quake.展开更多
The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yu...The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yushu earthquake is the Yushu section of the Garze-Yushu faults zone.It strikes NWW-NW,23 km long near the Yushu County seat,dominated by left-lateral strike slip,and appearing as a surface rupture zone.The macroscopic epicenter is positioned at Guo-yang-yan -song-duo of Gyegu Town(33°03'11"N,96°51'26"E),where the co-seismic horizontal offset measured is 1.75 m.Geohazards induced by the Yushu earthquake are mainly rockfalls,landslides,debris flows, and unstable slopes.They are controlled by the earthquake-generating fault and are mostly distributed along it.There are several geohazard chains having been established,such as earthquake,canal damage,soil liquefying,landslide-debris flow,earthquake,soil liquefying,roadbed deformation,etc.In order to prevent seismic hazards,generally,where there is a visible surface rupture induced by the Yushu earthquake,reconstruction should be at least beyond 20 m,on each side,from it.Sufficient attention should also be given to potential geohazards or geohazard chains induced by the earthquake.展开更多
The 2010 Yushu MsT.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°...The 2010 Yushu MsT.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°E, focal depth 10.22 km) and more than 600 aftershocks were obtained. The focal mechanisms of the mainshock and some aftershocks with Ms〉3.5 were estimated by jointly using broadband velocity waveforms from Global Seismic Network (GSN) and Qinghai Seismic Network as well. The focal mechanisms and relocation show that the strike of the fault plane is about 125° (WNW-ESE), and the mainshock is left-laterally strikeslip. The parameters of shear-wave splitting were obtained at seismic stations of YUS and L6304 by systematic analysis method of shear-wave splitting (SAM) method. Based on the parameters of shear-wave splitting and focal mechanism, the characteristics of stress field in seismic source zone were analyzed. The directions of polarization at stations YUS and L6304 are different. It is concluded that after the mainshock and the Ms6.3 aftershock on April 14, the stress-field was changed.展开更多
On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake ge...On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.展开更多
The authors studied the seismic activity, precursory anomalies and abnormal animal behavior before the April 14, 2010 Ms 7.1 Yushu earthquake. Analysis showed that anomalies were not rich before the Ms 7.1 Yushu earth...The authors studied the seismic activity, precursory anomalies and abnormal animal behavior before the April 14, 2010 Ms 7.1 Yushu earthquake. Analysis showed that anomalies were not rich before the Ms 7.1 Yushu earthquake, but prominent anomalies were observed, such as the long and mid-term trend anomaly characterized by the seismic quiescence of Ms6. 0, MsS. 0 and Ms4.0 earthquakes, and the anomalies in precursor observation of surface water temperature in Yushu and Delingha and electromagnetic measurement in Ping'an. There were a large number of animal behavior anomalies appearing one week before the earthquake. An M4.7 earthquake occurred 130 minutes before the main shock. In this paper, we studied the dynamic process of the Yushu earthquake preparation using the earthquake focal mechanism solutions on the Bayan Har block boundary since 1996. The results show that the Kalakunlun M7.1 earthquake in 1996, the Mani M7.5 earthquake and the Yushu Ms7.1 earthquake have the same dynamic process. Long and mid-term trend anomalies may be related to the dynamics of evolution of different earthquakes. This paper also discusses the recurrence interval of strong earthquakes, foreshock identification and precursor observation of the Yushu Ms7. 1 earthquake.展开更多
The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon ten...The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon tension fissure zone was found at Longbao town. The main rupture in the northern part is about 16km long, about 9kin long in the middle part, and about 7km long in the southern part, with a total length of 34km. Each of the main ruptures consists of a series of en echelon sub-ruptures represented by a series of compression bulges alternating with tension fissures or by en echelon fissures. The rupture at Changusi, the southernmost of the ruptures, is characterized by vertical displacement, with a value of 50cm. The rupture zone shows left-lateral strike-slip characteristics. The maximal horizontal slip is on the northern main rupture, with a value of 1.8m.展开更多
Four results of the rupture process of 14 April 2010 Yushu, Qinghai, earthquake, obtained by inverting the broadband seismic data of Global Seismographic Network (GSN) based on the inversion method of earthquake rup...Four results of the rupture process of 14 April 2010 Yushu, Qinghai, earthquake, obtained by inverting the broadband seismic data of Global Seismographic Network (GSN) based on the inversion method of earthquake rupture process, were compared and discussed. It is found that the Yushu earthquake has several basic characteristics as follows: 1 There exist two principal sub-events which correspond to two slip-concentrated patches being located near the hypocenter and to the southeast of the epicenter. The rupture of the slip-concentrated patch to the southeast of the epicenter broke though the ground surface; 2 The peak slip and peak slip-rate are about 2.1 m and 1.1 m/s, respectively, indicating that the Yushu earthquake is an event with large slip-rate on the fault plane; 3 Overall the Yushu earthquake is a unilateral rupture event with the rupture mainly propagating southeastward. The strong focusing of the seismic energy in the southeast of the epicenter due to the "seismic Doppler effect" reasonably accounts for the tremendous damage in the Yushu city.展开更多
The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for ...The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.展开更多
On April 14,2010,an earthquake reaching Richter scale 7.1 struck Jiegu Town of Yushu,a mountain rescue operation promptly launched. All injurers had a direct assess to take medical care,and were immediately rescued an...On April 14,2010,an earthquake reaching Richter scale 7.1 struck Jiegu Town of Yushu,a mountain rescue operation promptly launched. All injurers had a direct assess to take medical care,and were immediately rescued and rapidly evacuated by air to Xining and Golmud at lower altitudes and admitted to advanced hospitals. Almost all of the injurers have been completely recovered. Yushu Earthquake was one of the highest earthquakes in the world,with a high incidence of acute altitude illness,which was observed in about 80 % of the lowland rescuers at an altitude of 4 000 m."Rescue the rescuers"became the major task of Qinghai-Tibetan rescue teams,all the severe patients were rapidly descended to Xining and treated promptly and effectively. The outcome was excellent,all patients survived. After the earthquake,it is a long and arduous task to reconstruct what has been destroyed. Medical teams continue to work in the Yushu Earthquake area because about 30 000 workers and carders are now here for rebuilding the earthquake center. Thus the prevention and treatment of altitude illness are still critical tasks for medical teams. Although all the fights are successful,there are more experiences and lessons we have learned from the medical mountain rescue during the earthquake and the reconstruction,and reports here are to sum up our experiences from the medical mountain rescue operation in Yushu Earthquake and draw the lessons that we should learn. With the increasing of earthquake probability occurring in the Qinghai-Tibetan Plateau,we also should prepare against earthquake disasters and for further rescue training in the high mountains.展开更多
During the Yushu Earthquake on April 14,2010,a large number of rescuers from sea level or lowlands ascended to the quake areas very rapidly or rapidly less than 24 h. However,Yushu Earthquake is the highest quake in t...During the Yushu Earthquake on April 14,2010,a large number of rescuers from sea level or lowlands ascended to the quake areas very rapidly or rapidly less than 24 h. However,Yushu Earthquake is the highest quake in the world at altitudes between 3 750 m and 4 878 m where is a serious hypoxic environment. A high incidence of acute altitude illness was found in the unacclimatized rescuers;the mountain rescue operation changed as "rescue the rescuers". Lesson from the Yushu Earthquake is that the occurrence of acute altitude illness may be closely related to the ascent schedules. This prompted us to study the relationship between ascent rate and the incidence and severity of acute altitude illness;five different groups were compared. The first group was 42 sea level male young soldiers who ascended to quake area very rapidly within 8 h at 4 000 m;the second group was 48 sea level male young soldiers who ascended to 4 000 m rapidly less than 18 h;the third group was 66 acclimatized medical workers from 2 261 m who ascended to 4 000 m rapidly within 12 h;the fourth group was 56 Tibetan medical workers from 2 800 m who ascended to 4 000 m rapidly within 8 h;the fifth group was 50 male sea level workers who ascended to 4 000 m gradually over a period of 4 d. The results showed that the sea level rescuers ascended to 4 000 m very rapidly or rapidly had the highest incidence of acute mountain sickness (AMS) with the greatest AMS scores and the lowest arterial oxygen saturation (SaO2);the sea level workers ascended to 4 000 m gradually had moderate incidence of AMS with moderate AMS scores and SaO2 values;whereas the acclimatized and adapted rescuers had the lowest incidence of AMS,lowest AMS scores and higher SaO2;especially none AMS occurred in Tibetan rescuers. AMS score is inversely related to the ascent rate (r=-0.24,p< 0.001). Additionally,acute altitude illness is significantly influenced by altitude acclimatization. The ascent rate is inversely re- lated to the period of altitude acclimatization whereas the time of perfect recovered from AMS is positively correlated to the time taken to acclimatize. Generally,the best means of preventing acute altitude illness is slow and gradual ascent to high altitude,as this allows time for establishing altitude acclimatization and tolerance to the hypoxic environment. However,during an emergency circumstance,such as mountain rescue operation,the rescuers must rapidly ascend to high altitude,so a series of preventive strategies including pre-acclimatization,using some prophylactic drugs and oxygen supplementary are sorely necessary.展开更多
Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum l...Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum line-of-sight displacement is 54 cm, which is equivalent to a sinistral strike slip of 180 cm on the surface. The location of macro-epicenter is very close to the epicenter determined by in situ investigation, suggesting that InSAR is an ideal tool for quick identification of the macro-epicenter, and thus for timely disaster assessment after a destructive earthquake.展开更多
On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036...On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036 landslides were determined from visual interpretation of aerial photographs and high resolution remote sensing images, and verified by selected field investigations. These landslides covered a total area of about 1. 194km~. Characteristics and failure mechanisms of these landslides are listed in this paper, including the fact that the spatial distribution of these landslides is controlled by co- seismic main surface fault ruptures. Most of the landslides were small scale, causing rather less hazards, and often occurring close to each other. The landslides were of various types, including mainly disrupted landslides and rock falls in shallows and also deep-seated landslides, liquefaction induced landslides, and compound landslides. In addition to strong ground shaking, which is the direct landslide triggering factor, geological, topographical, and human activity also have impact on the occurrence of earthquake triggered landslides. In this paper, five types of failure mechanisms related to the landslides are presented, namely, the excavated toes of slopes accompanied by strong ground shaking; surface water infiltration accompanied by strong ground shaking; co- seismic fault slipping accompanied by strong ground shaking; only strong ground shaking; and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by co-seismic ground shaking. Besides the main co-seismic surface ruptures, slope fissures were also delineated from visual interpretation of aerial photographs in high resolution. A total of 4814 slope fissures, with a total length up to 77. lkm, were finally mapped. These slope fissures are mainly distributed on the slopes located at the southeastern end of the main co-seismic surface rupture zone, an area subject to strong compression during the earthquake.展开更多
The purpose of this study was focused on the imaging features of the chest trauma and its relation to clinical characteristics. All the injured patients were from the Yushu Earthquake areas on days April 14 - 23,2010....The purpose of this study was focused on the imaging features of the chest trauma and its relation to clinical characteristics. All the injured patients were from the Yushu Earthquake areas on days April 14 - 23,2010. After an initial treatment,the injurers were rapidly transported from Yushu at an altitude of 4 000 m via air to Xining at 2 260 m within 6~8 h,and promptly admitted to Qinghai Provincial People’s Hospital. A total of 130 wounded injurers who had high suspicion of chest injuries all had examinations of Chest X-ray and computed tomography(CT)images. Of them 63 injurers presented at least one of the features of the chest trauma in imaging with a positive rate of 48.5 %. Of these,37 cases (28.5 %) were multi-system with multiple injuries ,33 cases (25.4 %) were chest trauma with multi-injury types,which included thoracic fractures in 54 cases (85.7 %),pleural injury in 56 cases (88.9 %),lung injury in 54 cases (85.7 %),lungs complications in 37 cases (58.7 %),and extrapulmonary complications of 35 cases (55.6 %). The radiological data were analyzed retrospectively. The features of chest trauma in Yushu Earthquake,the complications of chest injuries,and the relation between imaging findings and clinical manifestations,as well as the differences of chest trauma between Yushu Earthquake and Wenchuan Earthquake were discussed in detail.展开更多
The M_(W)7.1 Anchorage earthquake is the most destructive earthquake since the 1964 M_(W)9.2 great Alaska earthquake in the United States.In this study,high-rate GPS data and near-field broadband seismograms are used ...The M_(W)7.1 Anchorage earthquake is the most destructive earthquake since the 1964 M_(W)9.2 great Alaska earthquake in the United States.In this study,high-rate GPS data and near-field broadband seismograms are used in separate and joint inversions by the generalized Cut-and-Paste(gCAP)method to estimate the focal mechanism.In order to investigate the influence of crustal velocity structure on the focal mechanism inversion results,two velocity models(Crustl.0 and Alaska Earthquake Center(AEC))are used for detailed comparison and analysis.The results show that:(1)The two nodal planes of the optimal double-couple solution are nearly north-south striking,with dip angles of about 30°and 60°respectively,and the centroid focal depth is 54-55 km,which is an intraplate normal fault event.(2)The inversion results for the two types of data and the two velocity models are consistent with some previous studies,which indicates that the results are stable and reliable.The more accurate velocity structure model is helpful for focal mechanism inversion of the complex earthquake.(3)The inclusion of high-rate GPS data in joint inversion provides a more effective constraint on centroid depth.展开更多
The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of th...The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of the co-seismic surface rupture zone, and locally spouted up above the ground to coat the top of limestone blocks that had slid down from an adjacent ~300-m-high mountain slope. Based on our observations, the relations between the arrival times of P- and S-waves at the sand-boil location and the seismic rupture velocity, we conclude that 1) the sand boils occurred at least 18.24 s after the main shock;2) it took at least 4.09 - 9.79 s after the formation of co-seismic surface rupture to generate liquefaction at the sand-boil location;3) the spouting height of sand boils was at least 65 cm. Our findings help to clarify the relationships between the timing of lique-faction and the spouting height of sand boils during a large-magnitude earthquake.展开更多
Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of th...Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of the Yushu Ms7. 1 earthquake. Based on rectangular dislocation theory in an elastic-viscoelastic layered medium, we have simulated the co- seismic deformation and gravity change with gravitational effect considered. The pictures show that the absolute gravity measuring point is beside the extremum of coseismic gravity change, and the numerical value reaches 25.02 x 10-Sm. s-2. After a discussion about the gravity changes before the earthquake and the coherence consistency between two FG-5 absolute gravimeters, we think that the measured value 27.2 × 10^-8 m· s^-2 at Yushu station is coseismic gravity change. It's coincident with the simulation results based on dislocation theory. Therefore it is a good tool to test the near-field changes found by dislocation theory.展开更多
Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of...Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.展开更多
This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7....This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.展开更多
基金supported by the National Science and Technology Support Plan(2012BAK19B0102)the National Natural Science Foundation of China(41274083)State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences
文摘Absolute and relative gravity observations from 1998 -2010 from the China Crustal Movement Ob- servation Network, a major national scientific project, have been used to model the gravity field and its varia- tions associated with the April 14, 2010 Ms7.1 Yushu earthquake. The evolution of the regional gravity field and its relationship with seismicity before and after the Yushu earthquake are studied. The observed gravity changes are closely related to the active Ganzi-Yushu Fault, and gravity measurements can be used to observe the migration of material accompanying active faults and crustal tectonics. The dynamic variation of the gravity field reflects its evolution prior to and during the Yushu earthquake. The gravity measurements near its epicen- ter are as large as 80 × 10-s m/s2.and they show wave-like increases with time prior to the Yushu earth- quake.
基金supported by the National Natural Science Foundation of China(grant No.40902059)the Land Resource Survey Project of China Geological Survey (grant No.1212010914025,No.1212011014035)the Fundamental Research Fund of Institute of Geomechanics, CAGS(grant No.DZLXJK200906)
文摘The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yushu earthquake is the Yushu section of the Garze-Yushu faults zone.It strikes NWW-NW,23 km long near the Yushu County seat,dominated by left-lateral strike slip,and appearing as a surface rupture zone.The macroscopic epicenter is positioned at Guo-yang-yan -song-duo of Gyegu Town(33°03'11"N,96°51'26"E),where the co-seismic horizontal offset measured is 1.75 m.Geohazards induced by the Yushu earthquake are mainly rockfalls,landslides,debris flows, and unstable slopes.They are controlled by the earthquake-generating fault and are mostly distributed along it.There are several geohazard chains having been established,such as earthquake,canal damage,soil liquefying,landslide-debris flow,earthquake,soil liquefying,roadbed deformation,etc.In order to prevent seismic hazards,generally,where there is a visible surface rupture induced by the Yushu earthquake,reconstruction should be at least beyond 20 m,on each side,from it.Sufficient attention should also be given to potential geohazards or geohazard chains induced by the earthquake.
基金supported by basic research project of Institute of Earthquake Science of China Earthquake Science(No.2009-21)National Natural Science Foundation of China(No.41040034)
文摘The 2010 Yushu MsT.1 earthquake occurred in Ganzi-Yushu fault, which is the south boundary of Bayan Har block. In this study, by using double difference algorithm, the locations of mainshock (33.13°N, 96.59°E, focal depth 10.22 km) and more than 600 aftershocks were obtained. The focal mechanisms of the mainshock and some aftershocks with Ms〉3.5 were estimated by jointly using broadband velocity waveforms from Global Seismic Network (GSN) and Qinghai Seismic Network as well. The focal mechanisms and relocation show that the strike of the fault plane is about 125° (WNW-ESE), and the mainshock is left-laterally strikeslip. The parameters of shear-wave splitting were obtained at seismic stations of YUS and L6304 by systematic analysis method of shear-wave splitting (SAM) method. Based on the parameters of shear-wave splitting and focal mechanism, the characteristics of stress field in seismic source zone were analyzed. The directions of polarization at stations YUS and L6304 are different. It is concluded that after the mainshock and the Ms6.3 aftershock on April 14, the stress-field was changed.
基金funded by National Key Basic Research and Development Program(grant No.2008CB42570),China
文摘On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.
基金funded by Earthquake Tendency Tracing of 2011 of Department of Monitoring and Prediction of CEA under the"Earthquake Short and Imminent Prediction Climb Program of2020"(2011016301)
文摘The authors studied the seismic activity, precursory anomalies and abnormal animal behavior before the April 14, 2010 Ms 7.1 Yushu earthquake. Analysis showed that anomalies were not rich before the Ms 7.1 Yushu earthquake, but prominent anomalies were observed, such as the long and mid-term trend anomaly characterized by the seismic quiescence of Ms6. 0, MsS. 0 and Ms4.0 earthquakes, and the anomalies in precursor observation of surface water temperature in Yushu and Delingha and electromagnetic measurement in Ping'an. There were a large number of animal behavior anomalies appearing one week before the earthquake. An M4.7 earthquake occurred 130 minutes before the main shock. In this paper, we studied the dynamic process of the Yushu earthquake preparation using the earthquake focal mechanism solutions on the Bayan Har block boundary since 1996. The results show that the Kalakunlun M7.1 earthquake in 1996, the Mani M7.5 earthquake and the Yushu Ms7.1 earthquake have the same dynamic process. Long and mid-term trend anomalies may be related to the dynamics of evolution of different earthquakes. This paper also discusses the recurrence interval of strong earthquakes, foreshock identification and precursor observation of the Yushu Ms7. 1 earthquake.
基金supported by special R&D project in earthquake science,Seismic risk assessment of active faults in the national key earthquake monitoring and prevention regions(20070851)
文摘The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon tension fissure zone was found at Longbao town. The main rupture in the northern part is about 16km long, about 9kin long in the middle part, and about 7km long in the southern part, with a total length of 34km. Each of the main ruptures consists of a series of en echelon sub-ruptures represented by a series of compression bulges alternating with tension fissures or by en echelon fissures. The rupture at Changusi, the southernmost of the ruptures, is characterized by vertical displacement, with a value of 50cm. The rupture zone shows left-lateral strike-slip characteristics. The maximal horizontal slip is on the northern main rupture, with a value of 1.8m.
基金supported by China Postdoctoral Science Foundation funded project (20080440435)the project (DQJB09B06) from Institute of Geophysics (IGP),China Earthquake Administration (CEA). Contribution No. is 10FE3002, IGP-CEA
文摘Four results of the rupture process of 14 April 2010 Yushu, Qinghai, earthquake, obtained by inverting the broadband seismic data of Global Seismographic Network (GSN) based on the inversion method of earthquake rupture process, were compared and discussed. It is found that the Yushu earthquake has several basic characteristics as follows: 1 There exist two principal sub-events which correspond to two slip-concentrated patches being located near the hypocenter and to the southeast of the epicenter. The rupture of the slip-concentrated patch to the southeast of the epicenter broke though the ground surface; 2 The peak slip and peak slip-rate are about 2.1 m and 1.1 m/s, respectively, indicating that the Yushu earthquake is an event with large slip-rate on the fault plane; 3 Overall the Yushu earthquake is a unilateral rupture event with the rupture mainly propagating southeastward. The strong focusing of the seismic energy in the southeast of the epicenter due to the "seismic Doppler effect" reasonably accounts for the tremendous damage in the Yushu city.
基金supported by the National Natural Science Foundation of China(Grant No,41171332)the National Science & Technology Pillar Program of China(Grant No.2008BAK50B01-5,2008BAK50B01-6 and O8H80210AR)
文摘The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.
基金"973"National Key Basic Research and Development Program(No.2012CB518202)Project of Qinghai Development of Science and Technology(No.2011-N-150)
文摘On April 14,2010,an earthquake reaching Richter scale 7.1 struck Jiegu Town of Yushu,a mountain rescue operation promptly launched. All injurers had a direct assess to take medical care,and were immediately rescued and rapidly evacuated by air to Xining and Golmud at lower altitudes and admitted to advanced hospitals. Almost all of the injurers have been completely recovered. Yushu Earthquake was one of the highest earthquakes in the world,with a high incidence of acute altitude illness,which was observed in about 80 % of the lowland rescuers at an altitude of 4 000 m."Rescue the rescuers"became the major task of Qinghai-Tibetan rescue teams,all the severe patients were rapidly descended to Xining and treated promptly and effectively. The outcome was excellent,all patients survived. After the earthquake,it is a long and arduous task to reconstruct what has been destroyed. Medical teams continue to work in the Yushu Earthquake area because about 30 000 workers and carders are now here for rebuilding the earthquake center. Thus the prevention and treatment of altitude illness are still critical tasks for medical teams. Although all the fights are successful,there are more experiences and lessons we have learned from the medical mountain rescue during the earthquake and the reconstruction,and reports here are to sum up our experiences from the medical mountain rescue operation in Yushu Earthquake and draw the lessons that we should learn. With the increasing of earthquake probability occurring in the Qinghai-Tibetan Plateau,we also should prepare against earthquake disasters and for further rescue training in the high mountains.
基金"973"National Key Basic Research and Development Program(No.2012CB518202)Project of Qinghai Development of Science and Technology(No.2011-N-150)
文摘During the Yushu Earthquake on April 14,2010,a large number of rescuers from sea level or lowlands ascended to the quake areas very rapidly or rapidly less than 24 h. However,Yushu Earthquake is the highest quake in the world at altitudes between 3 750 m and 4 878 m where is a serious hypoxic environment. A high incidence of acute altitude illness was found in the unacclimatized rescuers;the mountain rescue operation changed as "rescue the rescuers". Lesson from the Yushu Earthquake is that the occurrence of acute altitude illness may be closely related to the ascent schedules. This prompted us to study the relationship between ascent rate and the incidence and severity of acute altitude illness;five different groups were compared. The first group was 42 sea level male young soldiers who ascended to quake area very rapidly within 8 h at 4 000 m;the second group was 48 sea level male young soldiers who ascended to 4 000 m rapidly less than 18 h;the third group was 66 acclimatized medical workers from 2 261 m who ascended to 4 000 m rapidly within 12 h;the fourth group was 56 Tibetan medical workers from 2 800 m who ascended to 4 000 m rapidly within 8 h;the fifth group was 50 male sea level workers who ascended to 4 000 m gradually over a period of 4 d. The results showed that the sea level rescuers ascended to 4 000 m very rapidly or rapidly had the highest incidence of acute mountain sickness (AMS) with the greatest AMS scores and the lowest arterial oxygen saturation (SaO2);the sea level workers ascended to 4 000 m gradually had moderate incidence of AMS with moderate AMS scores and SaO2 values;whereas the acclimatized and adapted rescuers had the lowest incidence of AMS,lowest AMS scores and higher SaO2;especially none AMS occurred in Tibetan rescuers. AMS score is inversely related to the ascent rate (r=-0.24,p< 0.001). Additionally,acute altitude illness is significantly influenced by altitude acclimatization. The ascent rate is inversely re- lated to the period of altitude acclimatization whereas the time of perfect recovered from AMS is positively correlated to the time taken to acclimatize. Generally,the best means of preventing acute altitude illness is slow and gradual ascent to high altitude,as this allows time for establishing altitude acclimatization and tolerance to the hypoxic environment. However,during an emergency circumstance,such as mountain rescue operation,the rescuers must rapidly ascend to high altitude,so a series of preventive strategies including pre-acclimatization,using some prophylactic drugs and oxygen supplementary are sorely necessary.
基金supported by National Natural Science Foundation of China( 41004008) Key Foundation of Institute of Seismology China Earthquake Administration ( IS201026019) +3 种基金State Key Laboratory of Cryo-spheric Sciences,Cold and Arid Regions Environment and Engineering Research Institute,Chinese Academy of Sciences ( SKL CS09 - 03) the Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University( 2009B54) the Foundation of Institute of Seismology China Earthquake Administration( IS200826057 ) National Key Technology R&D Program of China( 2008BAC35B04 -5)
文摘Co-seismic ground-surface deformation of the Yushu earthquake on April 14, 2010 is studied on the basis of interferometry principle by using InSAR images from ALOS PALSAR and ENVISAT ASAR pairs. The observed maximum line-of-sight displacement is 54 cm, which is equivalent to a sinistral strike slip of 180 cm on the surface. The location of macro-epicenter is very close to the epicenter determined by in situ investigation, suggesting that InSAR is an ideal tool for quick identification of the macro-epicenter, and thus for timely disaster assessment after a destructive earthquake.
基金sponsored by the National Natural Science Foundation,China(40821160550),supported by the National Natural Science Foundation of China (41202235 )the Basic Scientific Fund of the Institute of Geology, China Earthquake Administration (IGCEA1215)
文摘On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036 landslides were determined from visual interpretation of aerial photographs and high resolution remote sensing images, and verified by selected field investigations. These landslides covered a total area of about 1. 194km~. Characteristics and failure mechanisms of these landslides are listed in this paper, including the fact that the spatial distribution of these landslides is controlled by co- seismic main surface fault ruptures. Most of the landslides were small scale, causing rather less hazards, and often occurring close to each other. The landslides were of various types, including mainly disrupted landslides and rock falls in shallows and also deep-seated landslides, liquefaction induced landslides, and compound landslides. In addition to strong ground shaking, which is the direct landslide triggering factor, geological, topographical, and human activity also have impact on the occurrence of earthquake triggered landslides. In this paper, five types of failure mechanisms related to the landslides are presented, namely, the excavated toes of slopes accompanied by strong ground shaking; surface water infiltration accompanied by strong ground shaking; co- seismic fault slipping accompanied by strong ground shaking; only strong ground shaking; and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by co-seismic ground shaking. Besides the main co-seismic surface ruptures, slope fissures were also delineated from visual interpretation of aerial photographs in high resolution. A total of 4814 slope fissures, with a total length up to 77. lkm, were finally mapped. These slope fissures are mainly distributed on the slopes located at the southeastern end of the main co-seismic surface rupture zone, an area subject to strong compression during the earthquake.
基金Project of Qinghai Development of Science and Technology (No.2011-N-150)
文摘The purpose of this study was focused on the imaging features of the chest trauma and its relation to clinical characteristics. All the injured patients were from the Yushu Earthquake areas on days April 14 - 23,2010. After an initial treatment,the injurers were rapidly transported from Yushu at an altitude of 4 000 m via air to Xining at 2 260 m within 6~8 h,and promptly admitted to Qinghai Provincial People’s Hospital. A total of 130 wounded injurers who had high suspicion of chest injuries all had examinations of Chest X-ray and computed tomography(CT)images. Of them 63 injurers presented at least one of the features of the chest trauma in imaging with a positive rate of 48.5 %. Of these,37 cases (28.5 %) were multi-system with multiple injuries ,33 cases (25.4 %) were chest trauma with multi-injury types,which included thoracic fractures in 54 cases (85.7 %),pleural injury in 56 cases (88.9 %),lung injury in 54 cases (85.7 %),lungs complications in 37 cases (58.7 %),and extrapulmonary complications of 35 cases (55.6 %). The radiological data were analyzed retrospectively. The features of chest trauma in Yushu Earthquake,the complications of chest injuries,and the relation between imaging findings and clinical manifestations,as well as the differences of chest trauma between Yushu Earthquake and Wenchuan Earthquake were discussed in detail.
基金co-supported by the National Natural Science Foundation of China under Grants No.41721003,No.42074007the National Key Research and Development Program of China under Grant No.2018YFC1503604。
文摘The M_(W)7.1 Anchorage earthquake is the most destructive earthquake since the 1964 M_(W)9.2 great Alaska earthquake in the United States.In this study,high-rate GPS data and near-field broadband seismograms are used in separate and joint inversions by the generalized Cut-and-Paste(gCAP)method to estimate the focal mechanism.In order to investigate the influence of crustal velocity structure on the focal mechanism inversion results,two velocity models(Crustl.0 and Alaska Earthquake Center(AEC))are used for detailed comparison and analysis.The results show that:(1)The two nodal planes of the optimal double-couple solution are nearly north-south striking,with dip angles of about 30°and 60°respectively,and the centroid focal depth is 54-55 km,which is an intraplate normal fault event.(2)The inversion results for the two types of data and the two velocity models are consistent with some previous studies,which indicates that the results are stable and reliable.The more accurate velocity structure model is helpful for focal mechanism inversion of the complex earthquake.(3)The inclusion of high-rate GPS data in joint inversion provides a more effective constraint on centroid depth.
文摘The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of the co-seismic surface rupture zone, and locally spouted up above the ground to coat the top of limestone blocks that had slid down from an adjacent ~300-m-high mountain slope. Based on our observations, the relations between the arrival times of P- and S-waves at the sand-boil location and the seismic rupture velocity, we conclude that 1) the sand boils occurred at least 18.24 s after the main shock;2) it took at least 4.09 - 9.79 s after the formation of co-seismic surface rupture to generate liquefaction at the sand-boil location;3) the spouting height of sand boils was at least 65 cm. Our findings help to clarify the relationships between the timing of lique-faction and the spouting height of sand boils during a large-magnitude earthquake.
基金funded by the National Natural Science Foundation of China(41104049)the Earthquake Situation Tracking,CEA(2012020207)Scientific Investigation of Yushu M S 7.1 Earthquake,CEA(2060302)
文摘Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of the Yushu Ms7. 1 earthquake. Based on rectangular dislocation theory in an elastic-viscoelastic layered medium, we have simulated the co- seismic deformation and gravity change with gravitational effect considered. The pictures show that the absolute gravity measuring point is beside the extremum of coseismic gravity change, and the numerical value reaches 25.02 x 10-Sm. s-2. After a discussion about the gravity changes before the earthquake and the coherence consistency between two FG-5 absolute gravimeters, we think that the measured value 27.2 × 10^-8 m· s^-2 at Yushu station is coseismic gravity change. It's coincident with the simulation results based on dislocation theory. Therefore it is a good tool to test the near-field changes found by dislocation theory.
文摘Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.
基金sponsored by the National Key Technology R&D Program,China (2008BAC38B03-01)
文摘This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.