期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze Ophiolite, Southern Xizang(Tibet) 被引量:14
1
作者 LIU Tong WU Fuyuan +5 位作者 ZHANG Liangliang ZHAI Qingguo LIU Chuanzhou JI Wenbin Ji ZHANG Chang XUYang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期222-223,共2页
The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of ... The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of gabbros, 展开更多
关键词 TIBET Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the mantle Peridotite of the Xigaze Ophiolite Pb Southern Xizang
下载PDF
Petrochemical eigenvalues and diagrams for the identification of metamorphic rocks'protolith,taking the host rocks of Dashuigou tellurium deposit in China as an example 被引量:1
2
作者 Jianzhao Yin Shoupu Xiang +2 位作者 Yuhong Chao Yuhan Yin Hongyun Shi 《Acta Geochimica》 EI CAS CSCD 2023年第1期103-124,共22页
The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ... The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift. 展开更多
关键词 Petrochemical diagrams and eigenvalue PROTOLITH Metamorphic rock Independent tellurium deposit Host rock the mantle plume
下载PDF
Origin of the Dashuigou Independent Tellurium Deposit at the Southeastern Qinghai-Tibet Plateau:Based on the Abundances of Trace Elements in the Country Rocks
3
作者 Jianzhao Yin Shoupu Xiang +2 位作者 Haoyu Yin Hongyun Shi Yuhong Chao 《Advances in Geological and Geotechnical Engineering Research》 2023年第4期41-55,共15页
Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,a... Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures. 展开更多
关键词 Origin of ore-forming elements the Dashuigou independent tellurium deposit Trace element abundance the country rocks the mantle plume
下载PDF
The Minimum Stable Pressure and Geological Significants of Supersilic Garnet in Continental Felsic Rocks: Constraints from HT-HP Experiments 被引量:2
4
作者 LIU Liang CHEN Danling +4 位作者 ZHANG Junfeng KANG Lei YANG Wenqiang LIAO Xiaoying MA Tuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期32-33,共2页
A lot of previous experimental studies on ultramafic rocks(SiO2 unsaturated system)(Ringwood and Major, 1971;Irifune et al., 1986;Gasparik, 1989;Ono and Yasuda, 1996) have demonstrated that characteristics of Si-rich ... A lot of previous experimental studies on ultramafic rocks(SiO2 unsaturated system)(Ringwood and Major, 1971;Irifune et al., 1986;Gasparik, 1989;Ono and Yasuda, 1996) have demonstrated that characteristics of Si-rich and Al-deficient in garnet are resulted from coupled substitution of SiⅥ+MⅥ=AlⅥ+AlⅥ and SiⅥ+NaⅧ=AlⅥ+MⅧ(M=Mg, Fe, Ca) at ultrahigh pressures(UHP)(>5 GPa). The degree of substitution will be enhanced by increasing pressure which has a positive correlation with the content of SiⅥ, but a negative correlation with the content of AlⅥ in supersilic garnet. These experimental results established a theoretical foundation for further understanding the formation mechanism of the exsolution of pyroxene in garnet observed in deep mantle xenoliths and some ultrahigh pressure rocks, and also for estimating the pressure conditions of the formation of supersilic garnet before exsolution(Haggerty and Sautter, 1990;Sautter et al., 1991;van Roermund et al., 1998;Ye et al., 2000). Although some experimental studies on SiO2 saturated system have been reported(Irifune et al., 1994;Ono., 1998;Dobrazhinetskya and Green.,2007;Wu et al., 2009), the stability conditions of supersilic garnet are still lack of unified understanding. Therefore, HP-HT experiments were carried out on felsic rocks under conditions of 6–12 GPa and 1000℃–1400℃. Combined with previous experimental data, we try to figure out the minimum stable pressure and geological significants of supersilic garnet in SiO2 saturated system. Our experimental results from SiO2 saturated system show the minimum stable pressure of supersilic garnet should be ≥10 GP of stishovite stability field. These results are similar as that from experiments using starting composition similar to average upper continental crust reported by Irifune et al(1994) who yielded that garnet gradually became supersilic and Al-deficient as pressures increased above 10 GPa, especially in a pressure interval between 13 and 18 GPa. Moreover, experiments with different starting materials(Ono, 1998;Dobrazhinetskya and Green, 2007;Wu et al. 2009) also indicate the stable pressure condition of supersilic garnet is mainly ≥9 –10 GPa in SiO2 saturated system if data of small-size grains at low temperature are ignored due to measuring errors. Thus, it can be concluded that the minimum stable pressure of supersilic garnet in SiO2 saturated system is distinctly different from that in SiO2 unsaturated ultramafic rock system. The minimum pressure of the former is ≥9–10 GPa of stishovite stability field, while that of the latter is >5 GPa. Therefore, whether independent SiO2 phase exist or rock system is SiO2 saturated must be taken into considered when estimating the peak pressure of exsolutions in supersilic garnet in UHP rocks. Furthermore, pressure of >5 GPa directly estimated by supersilic garnet based on conclusion from SiO2 unsaturation system rather than SiO2 saturation in previous sdudies may have been underestimated and need to be re-estimated. Supersilic garnets have been recognized by interior exsolutions of clinopyroxene in garnet pyroxene from Yinggelisayi South Altyn(Liu et al., 2005), and exsolutions of rodlike quartz+rutile in felsic gneiss from Songshugou North Qinling(Liu et al., 2003). According to the experimental results from SiO2 unsaturated system, the peak metamorphic pressure of the both SiO2 saturated rocks have been estimated to be >7 Gpa and >5 Gpa, respectively. However, combined with the new experimental results above, we re-estimated that the peak metamorphic pressure of these SiO2 saturated rocks should be≥9–10 GPa at least, implying an ultra-deep subduction to mantle depth of stishovite stability field. This research, together with previous findings(Liu et al., 2007, 2018), shows that continental subduction to mantle depth(300 km) of stishovite stability field and then exhumation to the surface is obviously more common than previously thought, and the rock types are also diverse. At the same time, it provides a new indicator and thought for recognizing the subduction to the mantle depth of stishovite stability field in UHP metamorphic belt. 展开更多
关键词 supersilic garnet the minimum stable pressure SiO2 saturated system the mantle depth of stishovite stability field ultrahigh pressure rocks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部