Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings conta...The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings containing diamond particles with the sizes in the range of 0—0.5,0.5—1,1—2μm are prepared.The surface morphology of diamond particles and composite coatings are observed by scanning electron microscopy(SEM).The wear tests of composite coatings are comparatively evaluated by sliding against a cemented tungsten carbide ball.The 3D morphology of worn scar is evaluated by using a 3Dprofiler.The results show that the hardness and wear resistance of composite coatings can increase with the increase of particle sizes.The mixture mechanism of adhesive wear and abrasive wear turn into single abrasive wear with the increase of particle sizes as well.The transformation of wear behaviour is mainly attributed to particle roles during wear process.展开更多
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were ...The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.展开更多
The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In...The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In the present study, spherical WC-Co erodent particles were used in single particle impact testing of Ni-P-nano-NiTi composite coatings on API X100 steel substrates at two average velocities—35 m/s and 52 m/s. Erosion tests were performed at impact angles of 30°, 45°, 60°, and 90°. The effect of NiTi concentration in the coating was also examined. Through examination of the impact craters and material response at various impact conditions, it was found that the presence of superelastic NiTi in the brittle Ni-P matrix hindered the propagation of cracks and provided a barrier to crack growth. The following toughening mechanisms were identified: crack bridging and deflection, micro-cracking, and transformation toughening.展开更多
The coating of Ni W P was deposited as base layer, and then the composite coating of Ni Ti(particles) Re(rare earth) was deposited subsequently on the surface of diamond using electroless plating by adding 2...The coating of Ni W P was deposited as base layer, and then the composite coating of Ni Ti(particles) Re(rare earth) was deposited subsequently on the surface of diamond using electroless plating by adding 2~3 μm Ti particles and trace rare earth salt to bath solution. Ti particles deposited on the surface of diamond were found by SEM and formation of TiC was verified by X ray diffraction analysis after heat treatment of the coatings in vacuum at 900 ℃. The binding strength between the coated diamond and the metal matrix was improved effectively in the diamond composite based on metal cement.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different s...Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).展开更多
A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix,and the Ti coated diamond particles rein...A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix,and the Ti coated diamond particles reinforced Al matrix composites were prepared by gas pressure infiltration for electronic packaging.The surface structure of the Ti coated diamond particles was investigated by XRD and SEM.The interfacial characteristics and fracture surfaces were observed by SEM and EDS.The coefficient of thermal expansion(CTE)of 50%(volume fraction)Ti coated diamond particles reinforced Al matrix composites was measured. The Ti coating on diamond before infiltration consists of inner TiC layer and outer TiO2 layer,and the inner TiC layer is very stable and cannot be removed during infiltration process.Fractographs of the composites illustrate that aluminum matrix fracture is the dominant fracture mechanism,and the stepped breakage of a diamond particle indicates strong interfacial bonding between the Ti coated diamond particles and the Al matrix.The measured low CTEs(5.07×10-6-9.27×10 -6K -1)of the composites also show the strong interfacial bonding between the Ti coated diamond particles and the Al matrix.展开更多
A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a r...A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.展开更多
Diamond has poor interface tolerance with Al.To enhance interface bonding,in this study,tungsten carbide(WC)nanocoatings on the surface of diamond particles were prepared using sol–gel and in-situ reaction methods.WO...Diamond has poor interface tolerance with Al.To enhance interface bonding,in this study,tungsten carbide(WC)nanocoatings on the surface of diamond particles were prepared using sol–gel and in-situ reaction methods.WO_(3) sol–gel with two concentrations,0.2 mol/L,and 0.5 mol/L,was,respectively,coated on diamond particles,then sintered at 1250℃for 2 h to produce WC nanocoatings.The concentration of 0.2 mol/L WO_(3) sol–gel was not enough to cover the surface of the diamond completely,while 0.5 mol/L WO_(3) sol–gel could fully cover it.Moreover,WO_(3) was preferentially deposited on{100}planes of the diamond.WO_(3) converted to WC in-situ nanocoatings after sintering due to the in-situ reaction of WO_(3) and diamond.The diamond-reinforced Al composites with and without WC coating were fabricated by powder metallurgy.The diamond/Al composite without coating has a thermal conductivity of 584.7 W/mK,while the composite with a coating formed by 0.2 mol/L and 0.5 mol/L WO_(3) sol–gel showed thermal conductivities of 626.1 W/mK and 584.2 W/mK,respectively.The moderate thickness of nanocoatings formed by 0.2 mol/L WO_(3) sol–gel could enhance interface bonding,therefore improving thermal conductivity.The nanocoating produced by 0.5 mol/L WO_(3) sol–gel cracked during the fabrication of the composite,leading to Al12W formation and a decrease in thermal conductivity.展开更多
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Supported by the National Natural Science Foundation of China(51175260)the Fundamental Research Funds for the Central Universities(NP2012506)the Open Fund of Jiangsu Province Key Laboratory for Materials Tribology(kjsmcx0901)
文摘The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings containing diamond particles with the sizes in the range of 0—0.5,0.5—1,1—2μm are prepared.The surface morphology of diamond particles and composite coatings are observed by scanning electron microscopy(SEM).The wear tests of composite coatings are comparatively evaluated by sliding against a cemented tungsten carbide ball.The 3D morphology of worn scar is evaluated by using a 3Dprofiler.The results show that the hardness and wear resistance of composite coatings can increase with the increase of particle sizes.The mixture mechanism of adhesive wear and abrasive wear turn into single abrasive wear with the increase of particle sizes as well.The transformation of wear behaviour is mainly attributed to particle roles during wear process.
文摘The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.
文摘The addition of superelastic NiTi to electroless Ni-P coating has been found to toughen the otherwise brittle coatings in static loading conditions, though its effect on erosion behaviour has not yet been explored. In the present study, spherical WC-Co erodent particles were used in single particle impact testing of Ni-P-nano-NiTi composite coatings on API X100 steel substrates at two average velocities—35 m/s and 52 m/s. Erosion tests were performed at impact angles of 30°, 45°, 60°, and 90°. The effect of NiTi concentration in the coating was also examined. Through examination of the impact craters and material response at various impact conditions, it was found that the presence of superelastic NiTi in the brittle Ni-P matrix hindered the propagation of cracks and provided a barrier to crack growth. The following toughening mechanisms were identified: crack bridging and deflection, micro-cracking, and transformation toughening.
文摘The coating of Ni W P was deposited as base layer, and then the composite coating of Ni Ti(particles) Re(rare earth) was deposited subsequently on the surface of diamond using electroless plating by adding 2~3 μm Ti particles and trace rare earth salt to bath solution. Ti particles deposited on the surface of diamond were found by SEM and formation of TiC was verified by X ray diffraction analysis after heat treatment of the coatings in vacuum at 900 ℃. The binding strength between the coated diamond and the metal matrix was improved effectively in the diamond composite based on metal cement.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金supported by the National Natural Science Foundation of China(No.11802125)。
文摘Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).
基金Project(60776019)supported by the National Natural Science Foundation of China
文摘A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix,and the Ti coated diamond particles reinforced Al matrix composites were prepared by gas pressure infiltration for electronic packaging.The surface structure of the Ti coated diamond particles was investigated by XRD and SEM.The interfacial characteristics and fracture surfaces were observed by SEM and EDS.The coefficient of thermal expansion(CTE)of 50%(volume fraction)Ti coated diamond particles reinforced Al matrix composites was measured. The Ti coating on diamond before infiltration consists of inner TiC layer and outer TiO2 layer,and the inner TiC layer is very stable and cannot be removed during infiltration process.Fractographs of the composites illustrate that aluminum matrix fracture is the dominant fracture mechanism,and the stepped breakage of a diamond particle indicates strong interfacial bonding between the Ti coated diamond particles and the Al matrix.The measured low CTEs(5.07×10-6-9.27×10 -6K -1)of the composites also show the strong interfacial bonding between the Ti coated diamond particles and the Al matrix.
文摘A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.
基金supported by the National Natural Science Foundation of China(No.51931009)the Liaoning Revitalization Talents Program(No.XLYC2007009).
文摘Diamond has poor interface tolerance with Al.To enhance interface bonding,in this study,tungsten carbide(WC)nanocoatings on the surface of diamond particles were prepared using sol–gel and in-situ reaction methods.WO_(3) sol–gel with two concentrations,0.2 mol/L,and 0.5 mol/L,was,respectively,coated on diamond particles,then sintered at 1250℃for 2 h to produce WC nanocoatings.The concentration of 0.2 mol/L WO_(3) sol–gel was not enough to cover the surface of the diamond completely,while 0.5 mol/L WO_(3) sol–gel could fully cover it.Moreover,WO_(3) was preferentially deposited on{100}planes of the diamond.WO_(3) converted to WC in-situ nanocoatings after sintering due to the in-situ reaction of WO_(3) and diamond.The diamond-reinforced Al composites with and without WC coating were fabricated by powder metallurgy.The diamond/Al composite without coating has a thermal conductivity of 584.7 W/mK,while the composite with a coating formed by 0.2 mol/L and 0.5 mol/L WO_(3) sol–gel showed thermal conductivities of 626.1 W/mK and 584.2 W/mK,respectively.The moderate thickness of nanocoatings formed by 0.2 mol/L WO_(3) sol–gel could enhance interface bonding,therefore improving thermal conductivity.The nanocoating produced by 0.5 mol/L WO_(3) sol–gel cracked during the fabrication of the composite,leading to Al12W formation and a decrease in thermal conductivity.