This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs...This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs) were produced in colloids via chemical (Ag) or photochemical (Au) reduction of appropriate ions. To prevent the oxidation of Ag NPs in colloid solution, external binary stabilizing agents PVP and SDS were used. Then, Ag and Au NPs (0.01-0.05% wt) were adsorbed from their colloid solutions on high disperse silica surface (Ssp=260m2/g) and samples prepared were dried. Materials obtained were studied by UV-vis, XRD, and TEM methods. Ag and Au NPs adsorbed on silica demonstrated a fair crystallinity in XRD. The surface plasmon resonance (SPR) band positions inherent to Ag and Au NPs on silica surface as well as the intensities of optical spectra were stable during 7 month and more. Obtained Ag NPs in colloids and Ag/SiO2 composites demonstrated excellent antimicrobial activity against a series of the microorganisms (Escherichia coli, Staphylococcus aurous, and Candida albicans). Au/SiO2 samples did not reveal any bactericide properties relative to the test microorganisms grown. The mechanisms of Ag(Au) NPs interaction with silica surface were analyzed.展开更多
Objective: To synthesize and isolate silver and gold nanoparticles from Litchi chinensis leaf methanolic extract, and to evaluate its comparative biological activities including muscles relaxant, analgesic, anti-infla...Objective: To synthesize and isolate silver and gold nanoparticles from Litchi chinensis leaf methanolic extract, and to evaluate its comparative biological activities including muscles relaxant, analgesic, anti-inflammatory and antidiarrheal. Methods: The gold and silver nanoparticles were synthesized by dissolving methanolic extract in gold chloride and silver nitrate solution separately which were confirmed by colour change and UV-Vis spectroscopy, and pellets were collected through centrifugation. Biological activities of the extract were conducted on BALB/c mice through various standard methods and the data were subjected to One-way ANOVA. Results: The colorless gold chloride solution changed to purple soon after the addition of plant extract, demonstrating that the reaction took place and gold ions were reduced to gold nanoparticles, while colorless silver nitrate solution changed to light and dark brown that was indicative of silver nanoparticles. The muscles relaxant activity showed that silver nanoparticles were more effective than gold nanoparticles and methanolic extract in traction test. The analgesic activity showed that silver and gold nanoparticles showed highest percentage decrease in acetic acid induced writhing at the doses of 50, 100 and 150 mg/kg b.w. The highest anti-inflammatory activity was produced by gold nanoparticles followed by silver nanoparticles, while low activity was observed in methanolic leaf extract. Only the crude methanolic extract showed significant antidiarrheal activity as compared to the standard drug atropine sulphate, while antidiarrheal activities of gold and silver nanoparticles were non-significant. Conclusions: The present work concludes that isolated silver and gold nanoparticles from leaf methanolic extract shows strong muscles relaxant, analgesic and anti-inflammatory activities while crude methanolic extract possesses good antidiarrheal activity.展开更多
Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold na...Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold nanoparticles were synthesized, and silver cations were then reduced on the nanoparticles. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined by UV-Vis spectroscopy, and the values obtained for gold and silver were approximately 520 nm and 400 nm in wavelength, respectively. The absorption peaks of the surface plasmon band show a clear red-shift due to size effect in the case of the silver surface, and a plasmon coupling effect, in the case of gold. To obtain a better understanding of the coating conditions, high resolution transmission electron microscopy was used. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained by dynamic light scattering. The development of this process, which is benign for the environment, opens the possibility for many applications in the areas of renewable energy, medicine and biology.展开更多
Several bacterial strains of Actinomycetes belonging to Streptomyces and Arthrobacter genera for the first time were used to study the biotechnology of synthesis of gold and silver nanoparticles. The experimental cond...Several bacterial strains of Actinomycetes belonging to Streptomyces and Arthrobacter genera for the first time were used to study the biotechnology of synthesis of gold and silver nanoparticles. The experimental conditions of gold and silver nanoparticles production by the cells of studied strains in aqueous chloroauric acid (HAuCIq) and in silver nitrate (AgNO3) solutions, respectively, were determined. Concentration and time-dependences of nanoparticle formation were investigated. The complex of optical and analytical methods was used for testing the gold and silver nanoparticles in the bacterial biomass. The TEM (Transmission Electron Microscopy) and XRD (X-ray Diffraction) data in all cases demonstrated the presence of crystals with fcc (face centered cubic) structure. The results obtained show that the Actinomycetes are capable of producing gold and silver nanoparticles of spherical shape extracellularly when exposed to suitable compounds. The particle size distribution shows that the sizes of nanoparticles are in the range of 5 nm to 80 nm. The biomass obtained may be used for industrial as well as medical and pharmaceutical purposes.展开更多
Gold and silver color embroidery is a process in which gold and silver platinum paper are wound on a silk thread to form gold and silver threads, which are then discarded into various patterns or contour lines, and th...Gold and silver color embroidery is a process in which gold and silver platinum paper are wound on a silk thread to form gold and silver threads, which are then discarded into various patterns or contour lines, and then colored lines are used to fasten the pattern lines on the base material. Gold and silver color embroidery has a long history as a representative embroidery skill in traditional embroidery techniques. It has complex techniques and deep deposits. Due to the particularity of its materials and techniques, it is faced with many problems in its inheritance in the off-campus education. This paper discusses the problems of the traditional gold and silver color embroidery techniques for off-campus education, the innovation in the process of teaching, the design of practical activities, and their significance, so that traditional skills can promote the national spirit in the new concept and teaching of out-ofschool education, inheriting the human civilization, serving the social harmonious and cultural development, thus achieving the goal of education.展开更多
As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationship...As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.展开更多
A detailed characterization of an iron oxy/hydroxide(gossan type) bearing refractory gold/silver ore was performed with a new diagnostic approach for the development of a pretreatment process prior to cyanide leaching...A detailed characterization of an iron oxy/hydroxide(gossan type) bearing refractory gold/silver ore was performed with a new diagnostic approach for the development of a pretreatment process prior to cyanide leaching. Gold was observed to be present as native and electrum(6-24 μm in size) and associated with limonite, goethite and lepidocrocite within calcite and quartz matrix. Mineral liberation analysis(MLA) showed that electrum is found as free grains and in association with beudantite, limonite/goethite and quartz. Silver was mainly present as acanthite(Ag2S) and electrum and as inclusions within beudantite phase in the ore. The cyanide leaching tests showed that the extractions of gold and silver from the ore(d80: 50 μm) were limited to 76% and 23%, respectively, over a leaching period of 24 h. Diagnostic leaching tests coupled with the detailed mineralogical analysis of the ore suggest that the refractory gold and silver are mainly associated within iron oxide mineral phases such as limonite/goethite and jarosite-beudantite, which can be decomposed in alkaline solutions. Based on these characterizations, alkaline pretreatment of ore in potassium hydroxide solution was performed prior to cyanidation, which improved significantly the extraction of silver and gold up to 87% Ag and 90% Au. These findings suggest that alkaline leaching can be used as a new diagnostic approach to characterize the refractoriness of iron oxy/hydroxide bearing gold/silver ore and as a pretreatment method to overcome the refractoriness.展开更多
In natural environment, tarnish was observed on the surface of historic and contemporary gold coins in several countries. Few years after the emergence of panda gold coins, several red spots were appeared on the surfa...In natural environment, tarnish was observed on the surface of historic and contemporary gold coins in several countries. Few years after the emergence of panda gold coins, several red spots were appeared on the surface. To identify the stains and to examine the spots, optical microscope (OM), scanning electron microscope (SEM), electron microprobe analysis (EMPA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used. It was found by microscopic observation that the stain has a dark blue central area surrounded by a large area with a nuance of colors from brown to red. Red spots usually contain holes in the center, which are distributed along the forging stress zones formed in the struck process. From the surface analyses using EMPA, sulfur and silver are detected besides gold, and the contents of Ag and S at the tarnish part are higher than those at the other part. Furthermore, distributions of Ag and S are correlated with the morphology of stains. XPS shows that components of stains are Ag2S and Ag2SO4 and the former is much predominant. These results are confirmed using XRD analysis. Accelerated tarnish test of gold in an atmosphere containing sulfur compound proves that the similar phenomenon appears when a small amount of silver is present on the surface of gold. It can be concluded that the occurrence of tarnish stains is caused by the presence of Ag and S.展开更多
Three different types of gold and silver deposits in Zhejiang Province(Huangshan gold deposit, Zhilingtou gold-silver deposit and Haoshi silver deposit) showmarked differences in lead and strontium isotopic compositio...Three different types of gold and silver deposits in Zhejiang Province(Huangshan gold deposit, Zhilingtou gold-silver deposit and Haoshi silver deposit) showmarked differences in lead and strontium isotopic composition, suggesting three differentsources and geneses of these deposits. The Huangshan gold deposit features low initial Srisotope ratios and low μ values or low content of radiogenic Pb and its ore-forming materialscame primarily from the upper mantle; the Zhilingtou gold-silver deposit shows high initial Srisotope ratios and high μ values or high content of radiogenic Pb and the ore-forming materialswere derived mainly from the upper crust; and the Haoshi silver deposit has its Pb and Srisotope ratios between the above two cases with the ore-forming materials stemming from boththe mantle and the crust. The characteristic Pb isotopic composition may serve as an indicatorfor prospecting for different types of ore deposits.展开更多
Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in ...Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures.展开更多
Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater...Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater prior to discharge. The purpose of this study was to investigate the use of a novel method for the minimization of heavy metals in the wastewater from the mining industry. A very promising electrochemical treatment technique that does not require chemical additions is electrocoagulation (EC) and sulphide precipitation. The present study has been done for the recovery of gold and silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes;that is a developed alternative technology for the Merril-Crowe process. The average gold and silver content in pregnant solution was 4.27 and 283 ppm respectively and the recoveries were 92% for gold and 95% for silver, with optimum operating parameters of pH 10, residence time of 20 minutes and addition of sodium chloride of 4 gr/L. The results of precipitation process show that the elimination of lead, zinc, cooper and iron ions from the barren solution was successful, with optimum operating parameters of pH 3 and residence time of 15 minutes, and the recoveries were 99% of these ions. Finally the characterization of the solid products of gold and silver formed during the EC process with Scanning Electronic Microscope was performed. Results suggest that magnetite particles and amorphous iron oxyhydroxides (lepidocrocite) were present.展开更多
Low gold and silver leaching kinetics has been commonly observed in traditional gold-silver cyanidation process, especially in heap leaching and in situ leaching operations. The different mineralogy of gold and silver...Low gold and silver leaching kinetics has been commonly observed in traditional gold-silver cyanidation process, especially in heap leaching and in situ leaching operations. The different mineralogy of gold and silver in the ores is suspected to be the main reason, e.g., the occurrence of low solubility acanthite (Ag2S) typically results in low overall silver extraction. Due to the low solubility of oxygen in cyanide solution, the reactivity and availability of oxidant is believed to be the critical limitation for gold and silver dissolution. The use of ferricyanide as the auxiliary oxidant for gold and silver cyanidation has been examined. The rotating disc test results prove the assistant effect of ferricyanide on increasing the dissolution rate of gold and silver. The potential use of ferricyanide in gold/silver cyanidation process is proposed based on the leaching results of actual ores.展开更多
The application of nanotechnology in various fields of science has earned a great concern over the past decades. The natural products and surface-modified polymers and metallic nanoparticles (NPs) have evolved as pr...The application of nanotechnology in various fields of science has earned a great concern over the past decades. The natural products and surface-modified polymers and metallic nanoparticles (NPs) have evolved as promising nanomaterials for targeted prostate cancer treatment. In the present study, Chitosan/poly (vinyl alcohol) (Cs/PVA) blend was synthesized by gamma radiation which could behave a nanoreactor for silver (Ag) and gold (Au) nanoparticle with promising anticancer applications. (Cs/PVA/Ag) and (Cs/PVA/Au) nanocomposites were confirmed by SEM (scanning electron microscope) and TEM (transmission electron microscope) analysis. The swelling properties have been investigated as a function of time and pH. The anti-cancer activity of the prepared nanocomposites was demonstrated in prostatic cancer cell line. It has a significant effect against prostatic cancer. However, metal nanoparticles have shown a good experimental success in the field of nanomedicine especially in cancer treatment, which has always been an area of high concern. The collaboration of biomedical research in the identification and characterization of biomedical strategies using the interesting metal nanocomposite will impact the future nanomedicine greatly.展开更多
The Suichang mine is the largest silicified vein-type silver-gold mineralization system in Southeast China, whose ore bodies are controlled by shear zones developing in Lower Proterozoic gneiss terrene with initial mi...The Suichang mine is the largest silicified vein-type silver-gold mineralization system in Southeast China, whose ore bodies are controlled by shear zones developing in Lower Proterozoic gneiss terrene with initial migmatization, which is covered by Upper Jurassic and Lower Cretaceous volcanic rock system and cut by acidic igneous veins of Jurassic and Cretaceous. The conclusions are as follows: (1) The ore-forming fluid is defined as superhigh tectonic-metamorphic fluid on the base of : 1 (D)-(18O) values 2 fluid inclusions;3 trace elements of pyrite from ores. (2) The shear zone silicified orebod-ies occurred in proterozoic, Jurassic and Cretaceous, which have been transforms in part by ore-bearing comb quartz vein of volcanism.展开更多
Ethnic people living on the Tibetan Plateau during the Tubo period have been well-known as not only strong and brave on horses,but they were also an ethnic group enriched with powerful creativity and rich imagination....Ethnic people living on the Tibetan Plateau during the Tubo period have been well-known as not only strong and brave on horses,but they were also an ethnic group enriched with powerful creativity and rich imagination.From Tubo’s cultural art,we can observe a large amount of extremely fine artifacts.For instance,among展开更多
Gold minerals in the Baochun skarn\|type gold deposit are Au\|Ag alloys with Ag contents within the range of 15-35.5 wt% and the minerals vary from 5μm to 50μm in size. As viewed from the electron microprobe images,...Gold minerals in the Baochun skarn\|type gold deposit are Au\|Ag alloys with Ag contents within the range of 15-35.5 wt% and the minerals vary from 5μm to 50μm in size. As viewed from the electron microprobe images, most gold grains show silver rims with a high Ag content as compared with the core, ranging generally from 2 to 3μm in width. From dynamic calculations based on the mass action and mass balance constraints on the crystallization of native gold, it is considered that the enrichment of silver in the rim of gold minerals is due to gradual enrichment of silver in the ore\|forming solutions with its evolution from the early to the late metallogenic stage.展开更多
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicificat...The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation of gold and silver-bearing minerals taking place under weak-acid conditions and near-neutral to weak-alkaline conditions, respectively, is the main or favourable factor for the ore zonation and separation between gold and silver.展开更多
During the last decade an enormous research effort has been deployed with respect to porous materials. Design, pore size, shape, morphology and density are crucial features for increasing the surface area of silicone ...During the last decade an enormous research effort has been deployed with respect to porous materials. Design, pore size, shape, morphology and density are crucial features for increasing the surface area of silicone materials, aiming for a better biological response so cells can adhere and grow. Many medical applications utilize polydimethylsiloxane (PDMS) in medical implants, despite its hydrophobic surface that does not stimulate cellular adhesion. Porosity and morphology are important factors in the wettability of PDMS, but modifying the hydrophobic surface functionalization is required. To achieve this goal, the use of coatings with gold and silver nanoparticles or nanofilms can be used as a strategy to improve biocompatibility. This is due to the effect on mammalian cell adhesion and proliferation related to gold nanoparticles, as well as the prevention of infections related to silver nanoparticles. In this study, the pores in the silicone matrix were formed using sugar crystals as a template agent, and later passed through a lixiviation process to form a porous silicon matrix. Next, the matrix was placed inside a colloidal suspension;a process that allowed the immobilization of these particles on the surface matrix. A hybrid stable material was synthetized through this process. The water absorption level of the porous silicone matrix with and without the nanoparticles was determined. The water uptake of the matrix was higher when the nanoparticles were immobilized on the surface. Van der Waals and hydrogen bonding interactions account for this, promoting the retention of a higher concentration of water molecules. Higher water uptake has been identified as being a key factor for improving biological response, cellular adhesion and growth, which accelerates implant integration in the body.展开更多
The factors that influence the colorimetric gene detection of gold label silver stain and improve the detection signals were studied. The influence of amino DNA probes and thiol DNA modified gold nanoparticles was inv...The factors that influence the colorimetric gene detection of gold label silver stain and improve the detection signals were studied. The influence of amino DNA probes and thiol DNA modified gold nanoparticles was investigated based on a sandwich hybridization system. An increase in amino probe concentration brought about an increase in hybridization signal which reached a threshold corresponding to the saturated concentration of amino probes bounded onto a glass slide surface. Since the steric hindrance effect of nanoparticles was dominant over the influence of a surface area, the bigger gold nanoparticles led to weaker hybridization signals. The hybridization efficiency enhanced significantly with the increase of the thiol DNA modified nanoparticle concentrations. Experimental results showed that 125 μmol/L of the amino DNA probe concentration, 15 nm of the gold nanoparticle diameter, and 4.07 nmol/L of the thiol DNA modified gold nanoparticle concentration were optimal for the detection system. The hybridization signals can be improved remarkably by choosing optimal hybridization conditions.展开更多
文摘This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs) were produced in colloids via chemical (Ag) or photochemical (Au) reduction of appropriate ions. To prevent the oxidation of Ag NPs in colloid solution, external binary stabilizing agents PVP and SDS were used. Then, Ag and Au NPs (0.01-0.05% wt) were adsorbed from their colloid solutions on high disperse silica surface (Ssp=260m2/g) and samples prepared were dried. Materials obtained were studied by UV-vis, XRD, and TEM methods. Ag and Au NPs adsorbed on silica demonstrated a fair crystallinity in XRD. The surface plasmon resonance (SPR) band positions inherent to Ag and Au NPs on silica surface as well as the intensities of optical spectra were stable during 7 month and more. Obtained Ag NPs in colloids and Ag/SiO2 composites demonstrated excellent antimicrobial activity against a series of the microorganisms (Escherichia coli, Staphylococcus aurous, and Candida albicans). Au/SiO2 samples did not reveal any bactericide properties relative to the test microorganisms grown. The mechanisms of Ag(Au) NPs interaction with silica surface were analyzed.
文摘Objective: To synthesize and isolate silver and gold nanoparticles from Litchi chinensis leaf methanolic extract, and to evaluate its comparative biological activities including muscles relaxant, analgesic, anti-inflammatory and antidiarrheal. Methods: The gold and silver nanoparticles were synthesized by dissolving methanolic extract in gold chloride and silver nitrate solution separately which were confirmed by colour change and UV-Vis spectroscopy, and pellets were collected through centrifugation. Biological activities of the extract were conducted on BALB/c mice through various standard methods and the data were subjected to One-way ANOVA. Results: The colorless gold chloride solution changed to purple soon after the addition of plant extract, demonstrating that the reaction took place and gold ions were reduced to gold nanoparticles, while colorless silver nitrate solution changed to light and dark brown that was indicative of silver nanoparticles. The muscles relaxant activity showed that silver nanoparticles were more effective than gold nanoparticles and methanolic extract in traction test. The analgesic activity showed that silver and gold nanoparticles showed highest percentage decrease in acetic acid induced writhing at the doses of 50, 100 and 150 mg/kg b.w. The highest anti-inflammatory activity was produced by gold nanoparticles followed by silver nanoparticles, while low activity was observed in methanolic leaf extract. Only the crude methanolic extract showed significant antidiarrheal activity as compared to the standard drug atropine sulphate, while antidiarrheal activities of gold and silver nanoparticles were non-significant. Conclusions: The present work concludes that isolated silver and gold nanoparticles from leaf methanolic extract shows strong muscles relaxant, analgesic and anti-inflammatory activities while crude methanolic extract possesses good antidiarrheal activity.
文摘Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold nanoparticles were synthesized, and silver cations were then reduced on the nanoparticles. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined by UV-Vis spectroscopy, and the values obtained for gold and silver were approximately 520 nm and 400 nm in wavelength, respectively. The absorption peaks of the surface plasmon band show a clear red-shift due to size effect in the case of the silver surface, and a plasmon coupling effect, in the case of gold. To obtain a better understanding of the coating conditions, high resolution transmission electron microscopy was used. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained by dynamic light scattering. The development of this process, which is benign for the environment, opens the possibility for many applications in the areas of renewable energy, medicine and biology.
文摘Several bacterial strains of Actinomycetes belonging to Streptomyces and Arthrobacter genera for the first time were used to study the biotechnology of synthesis of gold and silver nanoparticles. The experimental conditions of gold and silver nanoparticles production by the cells of studied strains in aqueous chloroauric acid (HAuCIq) and in silver nitrate (AgNO3) solutions, respectively, were determined. Concentration and time-dependences of nanoparticle formation were investigated. The complex of optical and analytical methods was used for testing the gold and silver nanoparticles in the bacterial biomass. The TEM (Transmission Electron Microscopy) and XRD (X-ray Diffraction) data in all cases demonstrated the presence of crystals with fcc (face centered cubic) structure. The results obtained show that the Actinomycetes are capable of producing gold and silver nanoparticles of spherical shape extracellularly when exposed to suitable compounds. The particle size distribution shows that the sizes of nanoparticles are in the range of 5 nm to 80 nm. The biomass obtained may be used for industrial as well as medical and pharmaceutical purposes.
文摘Gold and silver color embroidery is a process in which gold and silver platinum paper are wound on a silk thread to form gold and silver threads, which are then discarded into various patterns or contour lines, and then colored lines are used to fasten the pattern lines on the base material. Gold and silver color embroidery has a long history as a representative embroidery skill in traditional embroidery techniques. It has complex techniques and deep deposits. Due to the particularity of its materials and techniques, it is faced with many problems in its inheritance in the off-campus education. This paper discusses the problems of the traditional gold and silver color embroidery techniques for off-campus education, the innovation in the process of teaching, the design of practical activities, and their significance, so that traditional skills can promote the national spirit in the new concept and teaching of out-ofschool education, inheriting the human civilization, serving the social harmonious and cultural development, thus achieving the goal of education.
基金funded by Taishan Scholar Special Project Funds(ts201511076)Key Research and Development Project of Shandong Province(2017CXGC1604)
文摘As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.
基金Project(8300)supported by the Research Foundation of Karadeniz Technical University,Turkey
文摘A detailed characterization of an iron oxy/hydroxide(gossan type) bearing refractory gold/silver ore was performed with a new diagnostic approach for the development of a pretreatment process prior to cyanide leaching. Gold was observed to be present as native and electrum(6-24 μm in size) and associated with limonite, goethite and lepidocrocite within calcite and quartz matrix. Mineral liberation analysis(MLA) showed that electrum is found as free grains and in association with beudantite, limonite/goethite and quartz. Silver was mainly present as acanthite(Ag2S) and electrum and as inclusions within beudantite phase in the ore. The cyanide leaching tests showed that the extractions of gold and silver from the ore(d80: 50 μm) were limited to 76% and 23%, respectively, over a leaching period of 24 h. Diagnostic leaching tests coupled with the detailed mineralogical analysis of the ore suggest that the refractory gold and silver are mainly associated within iron oxide mineral phases such as limonite/goethite and jarosite-beudantite, which can be decomposed in alkaline solutions. Based on these characterizations, alkaline pretreatment of ore in potassium hydroxide solution was performed prior to cyanidation, which improved significantly the extraction of silver and gold up to 87% Ag and 90% Au. These findings suggest that alkaline leaching can be used as a new diagnostic approach to characterize the refractoriness of iron oxy/hydroxide bearing gold/silver ore and as a pretreatment method to overcome the refractoriness.
文摘In natural environment, tarnish was observed on the surface of historic and contemporary gold coins in several countries. Few years after the emergence of panda gold coins, several red spots were appeared on the surface. To identify the stains and to examine the spots, optical microscope (OM), scanning electron microscope (SEM), electron microprobe analysis (EMPA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used. It was found by microscopic observation that the stain has a dark blue central area surrounded by a large area with a nuance of colors from brown to red. Red spots usually contain holes in the center, which are distributed along the forging stress zones formed in the struck process. From the surface analyses using EMPA, sulfur and silver are detected besides gold, and the contents of Ag and S at the tarnish part are higher than those at the other part. Furthermore, distributions of Ag and S are correlated with the morphology of stains. XPS shows that components of stains are Ag2S and Ag2SO4 and the former is much predominant. These results are confirmed using XRD analysis. Accelerated tarnish test of gold in an atmosphere containing sulfur compound proves that the similar phenomenon appears when a small amount of silver is present on the surface of gold. It can be concluded that the occurrence of tarnish stains is caused by the presence of Ag and S.
文摘Three different types of gold and silver deposits in Zhejiang Province(Huangshan gold deposit, Zhilingtou gold-silver deposit and Haoshi silver deposit) showmarked differences in lead and strontium isotopic composition, suggesting three differentsources and geneses of these deposits. The Huangshan gold deposit features low initial Srisotope ratios and low μ values or low content of radiogenic Pb and its ore-forming materialscame primarily from the upper mantle; the Zhilingtou gold-silver deposit shows high initial Srisotope ratios and high μ values or high content of radiogenic Pb and the ore-forming materialswere derived mainly from the upper crust; and the Haoshi silver deposit has its Pb and Srisotope ratios between the above two cases with the ore-forming materials stemming from boththe mantle and the crust. The characteristic Pb isotopic composition may serve as an indicatorfor prospecting for different types of ore deposits.
文摘Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures.
文摘Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater prior to discharge. The purpose of this study was to investigate the use of a novel method for the minimization of heavy metals in the wastewater from the mining industry. A very promising electrochemical treatment technique that does not require chemical additions is electrocoagulation (EC) and sulphide precipitation. The present study has been done for the recovery of gold and silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes;that is a developed alternative technology for the Merril-Crowe process. The average gold and silver content in pregnant solution was 4.27 and 283 ppm respectively and the recoveries were 92% for gold and 95% for silver, with optimum operating parameters of pH 10, residence time of 20 minutes and addition of sodium chloride of 4 gr/L. The results of precipitation process show that the elimination of lead, zinc, cooper and iron ions from the barren solution was successful, with optimum operating parameters of pH 3 and residence time of 15 minutes, and the recoveries were 99% of these ions. Finally the characterization of the solid products of gold and silver formed during the EC process with Scanning Electronic Microscope was performed. Results suggest that magnetite particles and amorphous iron oxyhydroxides (lepidocrocite) were present.
文摘Low gold and silver leaching kinetics has been commonly observed in traditional gold-silver cyanidation process, especially in heap leaching and in situ leaching operations. The different mineralogy of gold and silver in the ores is suspected to be the main reason, e.g., the occurrence of low solubility acanthite (Ag2S) typically results in low overall silver extraction. Due to the low solubility of oxygen in cyanide solution, the reactivity and availability of oxidant is believed to be the critical limitation for gold and silver dissolution. The use of ferricyanide as the auxiliary oxidant for gold and silver cyanidation has been examined. The rotating disc test results prove the assistant effect of ferricyanide on increasing the dissolution rate of gold and silver. The potential use of ferricyanide in gold/silver cyanidation process is proposed based on the leaching results of actual ores.
文摘The application of nanotechnology in various fields of science has earned a great concern over the past decades. The natural products and surface-modified polymers and metallic nanoparticles (NPs) have evolved as promising nanomaterials for targeted prostate cancer treatment. In the present study, Chitosan/poly (vinyl alcohol) (Cs/PVA) blend was synthesized by gamma radiation which could behave a nanoreactor for silver (Ag) and gold (Au) nanoparticle with promising anticancer applications. (Cs/PVA/Ag) and (Cs/PVA/Au) nanocomposites were confirmed by SEM (scanning electron microscope) and TEM (transmission electron microscope) analysis. The swelling properties have been investigated as a function of time and pH. The anti-cancer activity of the prepared nanocomposites was demonstrated in prostatic cancer cell line. It has a significant effect against prostatic cancer. However, metal nanoparticles have shown a good experimental success in the field of nanomedicine especially in cancer treatment, which has always been an area of high concern. The collaboration of biomedical research in the identification and characterization of biomedical strategies using the interesting metal nanocomposite will impact the future nanomedicine greatly.
基金Chinese Gold Management. Office (No.93-45-33) and Zhejiag Metallurgical (No. 98-27).
文摘The Suichang mine is the largest silicified vein-type silver-gold mineralization system in Southeast China, whose ore bodies are controlled by shear zones developing in Lower Proterozoic gneiss terrene with initial migmatization, which is covered by Upper Jurassic and Lower Cretaceous volcanic rock system and cut by acidic igneous veins of Jurassic and Cretaceous. The conclusions are as follows: (1) The ore-forming fluid is defined as superhigh tectonic-metamorphic fluid on the base of : 1 (D)-(18O) values 2 fluid inclusions;3 trace elements of pyrite from ores. (2) The shear zone silicified orebod-ies occurred in proterozoic, Jurassic and Cretaceous, which have been transforms in part by ore-bearing comb quartz vein of volcanism.
文摘Ethnic people living on the Tibetan Plateau during the Tubo period have been well-known as not only strong and brave on horses,but they were also an ethnic group enriched with powerful creativity and rich imagination.From Tubo’s cultural art,we can observe a large amount of extremely fine artifacts.For instance,among
基金ThisprojectisfinanciallysupportedbytheNationalNaturalScienceFoundationofChina (No .4930 2 0 2 7)andbytheFundsforOutstandingYou
文摘Gold minerals in the Baochun skarn\|type gold deposit are Au\|Ag alloys with Ag contents within the range of 15-35.5 wt% and the minerals vary from 5μm to 50μm in size. As viewed from the electron microprobe images, most gold grains show silver rims with a high Ag content as compared with the core, ranging generally from 2 to 3μm in width. From dynamic calculations based on the mass action and mass balance constraints on the crystallization of native gold, it is considered that the enrichment of silver in the rim of gold minerals is due to gradual enrichment of silver in the ore\|forming solutions with its evolution from the early to the late metallogenic stage.
基金This project was financially supported by Research Funds of Gold Resources and Doctoral Training Funds sponsored by Chinese Academy of Sciences
文摘The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation of gold and silver-bearing minerals taking place under weak-acid conditions and near-neutral to weak-alkaline conditions, respectively, is the main or favourable factor for the ore zonation and separation between gold and silver.
文摘During the last decade an enormous research effort has been deployed with respect to porous materials. Design, pore size, shape, morphology and density are crucial features for increasing the surface area of silicone materials, aiming for a better biological response so cells can adhere and grow. Many medical applications utilize polydimethylsiloxane (PDMS) in medical implants, despite its hydrophobic surface that does not stimulate cellular adhesion. Porosity and morphology are important factors in the wettability of PDMS, but modifying the hydrophobic surface functionalization is required. To achieve this goal, the use of coatings with gold and silver nanoparticles or nanofilms can be used as a strategy to improve biocompatibility. This is due to the effect on mammalian cell adhesion and proliferation related to gold nanoparticles, as well as the prevention of infections related to silver nanoparticles. In this study, the pores in the silicone matrix were formed using sugar crystals as a template agent, and later passed through a lixiviation process to form a porous silicon matrix. Next, the matrix was placed inside a colloidal suspension;a process that allowed the immobilization of these particles on the surface matrix. A hybrid stable material was synthetized through this process. The water absorption level of the porous silicone matrix with and without the nanoparticles was determined. The water uptake of the matrix was higher when the nanoparticles were immobilized on the surface. Van der Waals and hydrogen bonding interactions account for this, promoting the retention of a higher concentration of water molecules. Higher water uptake has been identified as being a key factor for improving biological response, cellular adhesion and growth, which accelerates implant integration in the body.
文摘The factors that influence the colorimetric gene detection of gold label silver stain and improve the detection signals were studied. The influence of amino DNA probes and thiol DNA modified gold nanoparticles was investigated based on a sandwich hybridization system. An increase in amino probe concentration brought about an increase in hybridization signal which reached a threshold corresponding to the saturated concentration of amino probes bounded onto a glass slide surface. Since the steric hindrance effect of nanoparticles was dominant over the influence of a surface area, the bigger gold nanoparticles led to weaker hybridization signals. The hybridization efficiency enhanced significantly with the increase of the thiol DNA modified nanoparticle concentrations. Experimental results showed that 125 μmol/L of the amino DNA probe concentration, 15 nm of the gold nanoparticle diameter, and 4.07 nmol/L of the thiol DNA modified gold nanoparticle concentration were optimal for the detection system. The hybridization signals can be improved remarkably by choosing optimal hybridization conditions.